The paper presents automatic clustering using Harmony Search based clustering algorithm. In this algorithm, the capability of Improved Harmony search is used to automatically evolve the appropriate number of clusters as well as the locations of cluster centers. By incorporating the concept of variable length in each harmony vector, our strategy is able to encode variable number of candidate cluster centers at each iteration. The CH cluster validity index is used as an objective function to validate the clustering result obtained from each harmony memory vector. The proposed approach has been applied onto well-known datasets and experimental results show that the approach is able to find the appropriate number of clusters and locations of cluster centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.