Background: Dietary chemicals and their gut-metabolized products are explored for their anti-proliferative and pro-cell death effects. Dietary and metabolized chemicals are different from ruminants such as goats over humans. Methods: Loss of cell viability and induction of death due to goat urine DMSO fraction (GUDF) derived chemicals were assessed by routine in vitro assays upon MCF-7 breast cancer cells. Intracellular metabolite profiling of MCF-7 cells treated with goat urine DMSO fraction (GUDF) was performed using an in-house designed vertical tube gel electrophoresis (VTGE) assisted methodology, followed by LC-HRMS. Next, identified intracellular dietary chemicals such as ellagic acid were evaluated for their inhibitory effects against transducers of the c-Raf signaling pathway employing molecular docking and molecular dynamics (MD) simulation. Results: GUDF treatment upon MCF-7 cells displayed significant loss of cell viability and induction of cell death. A set of dietary and metabolized chemicals in the intracellular compartment of MCF-7 cells, such as ellagic acid, 2-hydroxymyristic acid, artelinic acid, 10-amino-decanoic acid, nervonic acid, 2,4-dimethyl-2-eicosenoic acid, 2,3,4'-Trihydroxy,4-Methoxybenzophenone and 9-amino-nonanoic acid were identified. Among intracellular dietary chemicals, ellagic acid displayed a strong inhibitory affinity (-8.7 kcal/mol) against c-Raf kinase. The inhibitory potential of ellagic acid was found to be significantly comparable with a known c-Raf kinase inhibitor sorafenib with overlapping inhibitory site residues (ARG450, GLU425, TRP423, VA403). Conclusion: Intracellular dietary-derived chemicals such as ellagic acid are suggested for the induction of cell death in MCF-7 cells. Ellagic acid is predicted as an inhibitor of c-Raf kinase and could be explored as an anti-cancer drug.
Oncometabolites are known to drive metabolic adaptations in oral cancer. Several oncometabolites are known to be shared between cancer cells and non-cancer cells including microbiotas to modulate the tumor microenvironment. Among potential oncometabolites, succinylaminoimidazolecarboxamide ribose5′-phosphate (SAICAR) supports the growth and invasiveness of cancer cells by pyruvate kinase M2 (PKM2) enzyme in a glucose starved tumor microenvironment. There is a significant gap that shows the detection of SAICAR in biological samples including nails of oral cancer patients. Metabolite identification of SAICAR was investigated in the nails of oral cancer patients using novel vertical tube gel electrophoresis (VTGE) and LC-HRMS. Further molecular docking and molecular dynamics simulations (MDS) were employed to determine the nature of molecular interactions of SAICAR (CHEBI ID:18319) with PKM2 (PDB ID: 4G1N). Molecular docking of SAICAR (CHEBI ID:18319) was performed against pyruvate kinase M2 (PDB ID: 4G1N). Data suggest the presence of oncometabolite SAICAR in nails of oral cancer. Molecular docking of SAICAR with PKM2 showed appreciable binding affinity (−8.0 kcal/mol) with residues including ASP407, THR405, GLU410, ARG443, GLY321, ARG436, HIS439, LYS266, and TYR466. Furthermore, MDS confirmed the specific binding of SAICAR within the activator site of PKM2 and the stability of SAICAR and PKM2 molecular interactions. In conclusion, SAICAR is a promising oncometabolite biomarker present in the nails of oral cancer patients. A significant activation potential of SAICAR exists with the PKM2 enzyme.
Objective: The objective of this study was to explore the biological relevance of free fatty acids derived from cow urine DMSO fraction (CUDF) by employing in vitro and in silico approaches. Background: Metabolic heterogeneity at the intra- and intercellular levels contributes to the metabolic plasticity of cancer cells during drug-induced response. Free fatty acid (FFA) availability at intra- and intercellular levels is related to tumor heterogeneity at interpatient and xeno-heterogeneity levels. Methods: We collected fresh urine from healthy cows and subjected it to fractionation in DMSO using drying, vortexing, and centrifugation. Finally, the sterile filtrate of cow urine DMSO fraction (CUDF) was evaluated for antiproliferative and proapoptotic effects in MCF-7 and ZR-75-1 breast cancer cells using routine cell-based assays. Intracellular metabolites were studied with the help of a novel in-house vertical tube gel electrophoresis (VTGE) method to reveal the nature of CUDF components in MCF-7 cells. Identified intracellular FFAs were studied for their molecular interactions with targeted receptor histone deacetylase (HDAC) using molecular docking and molecular dynamics (MD) simulations. Results: CUDF showed a significant reduction in cell viability and cell death in MCF-7 and ZR-75-1 breast cancer cells. Interestingly, FFAs tetracosanedioic acid, 13Z-docosenoic acid (erucic acid), nervonic acid, 3-hydroxy-tetradecanoic acid, and 3-hydroxcapric acid were found inside the treated MCF-7 cancer cells. These FFAs, including tetracosanedioic acid, indicated a specific affinity to HDAC at their inhibitory sites, similar to trichostatin A, a known inhibitor. Conclusions: This study reports on FFAs derived from CUDF as potential antiproliferative and pro-cell death agents against breast cancer cells. MD simulations hinted at tetracosanedioic acid and other FFAs as inhibitors of HDAC that could explain the observed effects of FFAs in cancer cells.
BackgroundThe need of agonists and antagonists of β2 adrenoceptor (β2AR) is warranted in various human disease conditions including cancer, cardiovascular and other metabolic disorders. However, the sources of agonists of β2AR are diverse in nature. Interestingly, there is a complete gap in the exploration of agonists of β2AR from serum that is a well-known component of culture media which supports growth and proliferation of normal and cancer cells in vitro.MethodsIn this paper, we employed a novel vertical tube gel electrophoresis (VTGE)-assisted purification of intracellular metabolites of MCF-7 cells grown in vitro in complete media with fetal bovine serum (FBS). Intracellular metabolites of MCF-7 cells were then analyzed by LC-HRMS. Identified intracellular tripeptides of FBS origin were evaluated for their molecular interactions with various extracellular and intracellular receptors including β2AR (PDB ID: 2RH1) by employing molecular docking and molecular dynamics simulations (MDS). A known agonist of β2AR, isoproterenol was used as a positive control in molecular docking and MDS analysesResultsWe report here identification of a few novel intracellular tripeptides, namely Arg-His-Trp, (PubChem CID-145453842), Pro-Ile-Glu, (PubChem CID-145457492), Cys-Gln-Gln, (PubChem CID-71471965), Glu-Glu-Lys, (PubChem CID-11441068) and Gly-Cys-Leu (PubChem CID145455600) of FBS origin in MCF-7 cells. Molecular docking and MDS analyses revealed that among these molecules, the tripeptide Arg-His-Trp shows a favorable binding affinity with β2AR (−9.8 Kcal/mol). Furthermore, agonistic effect of this tripeptide, Arg-His-Trp is significant and comparable with that of a known agonist of β2AR, isoproterenol.ConclusionIn conclusion, we identified a unique Arg-His-Trp tripeptide of FBS origin in MCF-7 cells by employing a novel approach. This unique tripeptide Arg-His-Trp is suggested to be a potential agonist of β2AR and it may have applications in the context of various human diseases like bronchial asthma and chronic obstructive pulmonary disease (COPD).NOVELTY & IMPACT STATEMENTSThis paper reports on a novel vertical tube gel electrophoresis (VTGE) system that assisted in the purification and identification of a few intracellular tripeptides in the in vitro grown breast cancer cells, MCF-7ls.Molecular docking and molecular dynamics simulation analyses strongly suggest that the tripeptide Arg-His-Trp among others forms the most stable ligand-protein complex with β2 adrenoceptor (β2AR). Its binding affinity and the nature of molecular interactions are comparable or even better than the known agonists of β2AR.This tripeptide Arg-His-Trp is predicted to show manyfold less cytotoxicity, mutagenicity, cardiotoxicity, drug-drug interactions, microsomal stability, and drug-induced liver injury over the other known agonists of β2AR.The tripeptide Arg-His-Trp is therefore suggested as an effective agonist of β2AR and this may be validated in future, in preclinical and clinical models.
Background: The need of agonists and antagonists of β2 adrenoceptor (β2AR) is warranted in various human disease conditions including cancer, cardiovascular and other metabolic disorders. However, the sources of agonists of β2AR are diverse in nature. Interestingly, there is a complete gap in the exploration of agonists of β2AR from serum that is a well-known component of culture media which supports growth and proliferation of normal and cancer cells in vitro. Methods: In this paper, we employed a novel vertical tube gel electrophoresis (VTGE)-assisted purification of intracellular metabolites of MCF-7 cells grown in vitro in complete media with fetal bovine serum (FBS). Intracellular metabolites of MCF-7 cells were then analyzed by LC-HRMS. Identified intracellular tripeptides of FBS origin were evaluated for their molecular interactions with various extracellular and intracellular receptors including β2AR (PDB ID: 2RH1) by employing molecular docking and molecular dynamics simulations (MDS). A known agonist of β2AR, isoproterenol was used as a positive control in molecular docking and MDS analyses. Results : We report here identification of a few novel intracellular tripeptides, namely Arg-His-Trp, (PubChem CID-145453842), Pro-Ile-Glu, (PubChem CID-145457492), Cys-Gln-Gln, (PubChem CID-71471965), Glu-Glu-Lys, (PubChem CID-11441068) and Gly-Cys-Leu (PubChem CID-145455600) of FBS origin in MCF-7 cells. Molecular docking and MDS analyses revealed that among these molecules, the tripeptide Arg-His-Trp shows a favorable binding affinity with β2AR (-9.8 Kcal/mol). The agonistic effect of Arg-His-Trp is significant and comparable with that of a known agonist of β2AR, isoproterenol. Conclusion: In conclusion, we identified a unique Arg-His-Trp tripeptide of FBS origin in MCF-7 cells by employing a novel approach. This unique tripeptide Arg-His-Trp is suggested to be a potential agonist of β2AR and it may have applications in the context of various human diseases like bronchial asthma and chronic obstructive pulmonary disease (COPD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.