Among several rendering techniques for volumetric data, direct volume rendering is a powerful visualization tool for a wide variety of applications. This paper describes the major features of hardware based volume exploration and presentation tool-Drishti. The word, Drishti, stands for vision or insight in Sanskrit, an ancient Indian language. Drishti is a cross-platform open-source volume rendering system that delivers high quality, state of the art renderings. The features in Drishti include, though not limited to, production quality rendering, volume sculpting, multi-resolution zooming, transfer function blending, profile generation, measurement tools, mesh generation, stereo/anaglyph/crosseye renderings. Ultimately, Drishti provides an intuitive and powerful interface for choreographing animations.
Evaluation of two-electron integrals forms a substantial part of the CPU time for any ab initio molecular orbital program. This part of the package, "MICROMOL", is parallelized. However, this parallelization leads to only sublinear speedups (typically 3 on a 4-node machine). In view of these results, the task of development of an efficient program for two-electron integrals suitable for the parallel environment has been taken up. The program is written in FORTRAN considering specific symmetry features and application of rigorous bounds. This program is further parallelized with a good load balancing strategy. The molecules used as the test cases are: trans-butadiene, benzene, nitrobenzene, naphtalene and cytosine, with 3 G and 4-31 G basis sets. The results indicate that the parallel version of this program gives a typical speedup of 3.6 for a 3 G basis set and approximately 3.4 for a 4-31 G basis set for all the molecules tested. The sequential version of this program is ~1.2 times faster than the sequential version of MICROMOL, whereas the parallel version is ~ 1.4 times faster than the parallelized MICROMOL. PACS: 31.15. + q; 31.20.Ej.
A reservoir carbonate core plug has been imaged in 3D across a range of length scales using high resolution X-ray microtomography (µ-CT). Data from the original 40-mm diameter plug was obtained at the vug scale (42 µm resolution) and allows the size, shape and spatial distribution of the disconnected vuggy porosity, φ vug = 3.5% to be measured. Within the imaged volume over 32,000 separate vugs are identified and a broad vug size distribution is measured. Higher resolution images, down to 1.1 µm resolution, on subsets of the plug exhibit interconnected porosity and allow one to measure characteristic, intergranular pore size. Pore scale structure and petrophysical properties (permeability, drainage capillary pressure, formation factor, and NMR response) are derived directly on the highest resolution tomographic dataset. We show that data over a range of porosity can be computed from a single plug fragment. Data for the carbonate core is compared to results derived from 3D images of clastic cores and strong differences noted. Computations of permeability are compared to conventional laboratory measurements on the same core material with good agreement. This demonstrates the feasibility of combining digitized images with numerical calculations to predict properties and derive cross-correlations for carbonate lithologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.