Neurodevelopmental disorders have a heritable component and are associated with region specific alterations in brain anatomy. However, it is unclear how genetic risks for neurodevelopmental disorders are translated into spatially patterned brain vulnerabilities. Here, we integrated cortical neuroimaging data from patients with neurodevelopmental disorders caused by genomic copy number variations (CNVs) and gene expression data from healthy subjects. For each of the six investigated disorders, we show that spatial patterns of cortical anatomy changes in youth are correlated with cortical spatial expression of CNV genes in neurotypical adults. By transforming normative bulk-tissue cortical expression data into cell-type expression maps, we link anatomical change maps in each analysed disorder to specific cell classes as well as the CNV-region genes they express. Our findings reveal organizing principles that regulate the mapping of genetic risks onto regional brain changes in neurogenetic disorders. Our findings will enable screening for candidate molecular mechanisms from readily available neuroimaging data.
Childhood socioeconomic status (SES) impacts cognitive development and mental health, but its association with human structural brain development is not yet well characterized. Here, we analyzed 1243 longitudinally acquired structural MRI scans from 623 youth (299 female/324 male) to investigate the relation between SES and cortical and subcortical morphology between ages 5 and 25 years. We found positive associations between SES and total volumes of the brain, cortical sheet, and four separate subcortical structures. These associations were stable between ages 5 and 25. Surface-based shape analysis revealed that higher SES is associated with areal expansion of lateral prefrontal, anterior cingulate, lateral temporal, and superior parietal cortices and ventrolateral thalamic, and medial amygdalohippocampal subregions. Meta-analyses of functional imaging data indicate that cortical correlates of SES are centered on brain systems subserving sensorimotor functions, language, memory, and emotional processing. We further show that anatomical variation within a subset of these cortical regions partially mediates the positive association between SES and IQ. Finally, we identify neuroanatomical correlates of SES that exist above and beyond accompanying variation in IQ. Although SES is clearly a complex construct that likely relates to development through diverse, nondeterministic processes, our findings elucidate potential neuroanatomical mediators of the association between SES and cognitive outcomes.
Neurodevelopmental disorders are highly heritable and associated with spatially-selective disruptions of brain anatomy. The logic that translates genetic risks into spatially patterned brain vulnerabilities remains unclear but is a fundamental question in disease pathogenesis. Here, we approach this question by integrating (i) in vivo neuroimaging data from patient subgroups with known causal genomic copy number variations (CNVs), and (ii) bulk and single-cell gene expression data from healthy cortex. First, for each of six different CNV disorders, we show that spatial patterns of cortical anatomy change in youth are correlated with spatial patterns of expression for CNV region genes in bulk cortical tissue from typically-developing adults. Next, by transforming normative bulk-tissue cortical expression data into cell-type expression maps, we further link each disorder's anatomical change map to specific cell classes and specific CNV-region genes that these cells express. Finally, we establish convergent validity of this "transcriptional vulnerability model" by inter-relating patient neuroimaging data with measures of altered gene expression in both brain and bloodderived patient tissue. Our work clarifies general biological principles that govern the mapping of genetic risks onto regional brain disruption in neurodevelopmental disorders. We present new methods that can harness these principles to screen for potential cellular and molecular determinants of disease from readily available patient neuroimaging data.
Childhood socioeconomic status (SES) impacts cognitive development and mental health, but its association with structural brain development is not yet well-characterized. Here, we analyzed 1243 longitudinally-acquired structural MRI scans from 623 youth to investigate the relation between SES and cortical and subcortical morphology between ages 5 and 25 years. We found positive associations between SES and total volumes of the brain, cortical sheet, and four separate subcortical structures. These associations were developmentally fixed rather than age-dependent.Surface-based shape analysis revealed that higher SES is associated with areal expansion of (i) lateral prefrontal, anterior cingulate, lateral temporal, and superior parietal cortices and (ii) ventrolateral thalamic, and medial amygdalo-hippocampal sub-regions. Meta-analyses of functional imaging data indicate that cortical correlates of SES are centered on brain systems subserving sensorimotor functions, language, memory, and emotional processing. We further show that anatomical variation within a subset of these cortical regions partially mediates the positive association between SES and IQ. Finally, we identify neuroanatomical correlates of SES that exist above and beyond accompanying variation in IQ. Our findings clarify the spatiotemporal patterning of SES-related neuroanatomical variation and inform ongoing efforts to dissect the causal pathways underpinning observed associations between childhood SES and regional brain anatomy.
The amygdala and hippocampus are two adjacent allocortical structures implicated in sex-biased and developmentally-emergent psychopathology. However, the spatiotemporal dynamics of amygdalo-hippocampal development remain poorly understood in healthy humans. The current study defined trajectories of volume and shape change for the amygdala and hippocampus by applying a multi-atlas segmentation pipeline (MAGeT-Brain) and semi-parametric mixed-effects spline modeling to 1,529 longitudinally-acquired structural MRI brain scans from a large, single-center cohort of 792 youth (403 males, 389 females) between the ages of 5 and 25 years old. We found that amygdala and hippocampus volumes both follow curvilinear and sexually dimorphic growth trajectories. These sex-biases were particularly striking in the amygdala: males showed a significantly later and slower adolescent deceleration in volume expansion (at age 20 years) than females (age 13 years). Shape analysis localized significant hot-spots of sex-biased anatomical development in sub-regional territories overlying rostral and caudal extremes of the CA1/2 in the hippocampus, and the centromedial nuclear group of the amygdala. In both sexes, principal components analysis revealed close integration of amygdala and hippocampus shape change along two main topographically-organized axes – low vs. high areal expansion, and early vs. late growth deceleration. These results (i) bring greater resolution to our spatiotemporal understanding of amygdalo-hippocampal development in healthy males and females, and (ii) uncover focal sex-differences in the structural maturation of the brain components that may contribute to differences in behavior and psychopathology that emerge during adolescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.