A multi-enzyme complex of fatty acid oxidation has been isolated from E. coli B-cells and has been purified to near homogeneity by a simple two-step procedure. The complex exhibits thiolase (EC 2.3.1.9), enoyl-CoA hydratase (EC 4.2.1.17), and 3-hydroxacyl-CoA dehydrogenase (EC 1.1.1.35) activities towards short-, medium-, and long-chain substrates. The complex has been estimated to have a molecular weight of approximately 300,000 and is apparently composed of two types of subunits with molecular weights of 78,000 and 42,000. The sequence of reactions by which long-chain fatty acids are degraded to acetyl-CoA was elucidated more than 20 years ago, and most of the enzymes of ,8-oxidation have been purified and extensively studied (1). However, little is known about the regulation of this metabolic pathway in eukaryotic cells and about the in vivo organization of the enzymes of fl-oxidation. The virtual absence of intermediates of fatty acid oxidation in mitochondria (2) suggests that the enzymes function in a coordinate manner and perhaps exist in lvo in a highly ordered arrangement which is disrupted when the mitochondria are broken. Should an ordered enzyme complex of fl-oxidation exist in mitochondria, it may be attached to the inner mitochondrial membrane because the reduction equivalents generated during the dehydrogenation of acyl-CoA are assumed to enter the electron transport chain via the electron-transferring protein. (5) with fatty acid oxidation mutants led to the suggestion that the genes for thiolase, crotonase, and 3-hydroxyacyl-CoA dehydrogenase form an operon. Because of the extensive genetic work done by Overath and because of the availability of fatty acid oxidation mutants, we decided to study the enzymes of fl-oxidation from E. coli with the hope of gaining further insight into the regulation and organization of the enzymes of fl-oxidation. In this communication, we report the isolation and purification of a multi-enzyme complex of fatty acid oxidation from E. coli B cells. This
The purified multienzyme complex of fatty acid oxidation from Escherichia coli was found to possess 3-hydroxyacyl-coenzyme A (CoA) epimerase and cis-A3-trans-A2-enoyl-CoA isomerase activities in addition to the previously identified enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-ketoactyl-CoA thiolase activities. Evidence is presented in support of the proposed association of all five enzyme activities with one protein which apparently is composed of two types of subunits and which can exist in several aggregated forms. The five component enzymes of the complex were rapidly inactivated by tris(hydroxymethyl)aminomethane, whereas they remained active in the presence of potassium phosphate.
Extensive lesions were produced in cell walls of Saccharomyces cerevisiae by the bleomycin family of anticancer antibiotics (30 min to 4 h). Electron micrographs revealed that the alterations were most frequently large breaks and small interruptions or holes in cell walls, which sometimes extended into cell membranes. Large portions of cell walls were sometimes lost. Cell walls were frequently ruptured in one or more positions. More than 75% of bud scar regions in single-plane sections and all bud scars in serial sections exhibited many interruptions and breaks after 3 or 4 h of treatment. The discovery of extensive damage to cell walls was consistent with the preferential (approximately 70%) association of radiolabeled bleomycin with cell walls and perimeters of bud scar regions after short exposures (30 min). After longer exposures, the distribution of silver grains changed from a predominant association with cell walls (30 min) to an increased association with the cell cytoplasm (1 to 4 h). This correlated with increased ultrastructural damage, since damage to cell walls was generally more frequent and more severe with increasing length of treatment (30 min to 4 h) or dose (25 to 100 micrograms/ml). Although DNA lesions are believed to be the lethal properties of bleomycins, the lesions produced in cell walls are also lethal properties of the antibiotics. The distributions of lesions on cell walls suggested a generalized interaction of the antibiotic with a cell wall component. These results led us to hypothesize a mechanism of effective antifungal action for the bleomycin family of antibiotics.
Bleomycin induces strand breakage in DNA through disruption of glycosidic linkages. We investigated the ability of bleomycin to damage yeast cell walls, which are composed primarily of carbohydrate. Bleomycin treatment of intact yeast cells facilitated enzymatic conversion of yeasts to spheroplasts. Bleomycin treatment also altered anchorage of mannoproteins to the cell wall matrix in intact cells or isolated cell walls. Cell surface mannoproteins were labelled with 12.5, and their solubilization was monitored. Seventeen hour treatments with bleomycin released some of the label directly into treatment supernatants and facilitated extraction of mannoproteins by dithiothreitol and lytic enzymes. Bleomycin treatments as short as 10 min caused changes in extraction of mannoproteins from intact cells. Specifically, cell wall anchorage of several mannoproteins was affected by the drug. There were drug-induced changes in extractability of mannoproteins with apparent molecular weights of 96,000, 80,000, 61,000, 41,000,31,500, and 21,000 (determined after deglycosylation with endo-N-acetylglucosaminidase H). The similarity of results obtained in the presence and absence of cycloheximide, the appearance of cell wall effects after only 10 min of treatment, and the similarity of effects in intact cells and isolated cell walls are consistent with direct drug-induced damage and inconsistent with a mechanism dependent on expression of bleomycin-damaged genes or other intracellular mediators. The results are consistent with bleomycin-mediated increases in cell wall permeability through disruption of glycosidic cross-linking structures in the cell wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.