BackgroundUnderstanding how tumor response is related to relapse risk would help clinicians make decisions about additional treatment options for patients who have received neoadjuvant endocrine treatment for estrogen receptor–positive (ER+) breast cancer.MethodsTumors from 228 postmenopausal women with confirmed ER+ stage 2 and 3 breast cancers in the P024 neoadjuvant endocrine therapy trial, which compared letrozole and tamoxifen for 4 months before surgery, were analyzed for posttreatment ER status, Ki67 proliferation index, histological grade, pathological tumor size, node status, and treatment response. Cox proportional hazards were used to identify factors associated with relapse-free survival (RFS) and breast cancer–specific survival (BCSS) in 158 women. A preoperative endocrine prognostic index (PEPI) for RFS was developed from these data and validated in an independent study of 203 postmenopausal women in the IMPACT trial, which compared treatment with anastrozole, tamoxifen, or the combination 3 months before surgery. Statistical tests were two-sided.ResultsMedian follow-up in P024 was 61.2 months. Patients with confirmed baseline ER+ clinical stage 2 and 3 tumors that were downstaged to stage 1 or 0 at surgery had 100% RFS (compared with higher stages, P < .001). Multivariable testing of posttreatment tumor characteristics revealed that pathological tumor size, node status, Ki67 level, and ER status were independently associated with both RFS and BCSS. The PEPI model based on these factors predicted RFS in the IMPACT trial (P = .002).ConclusionsBreast cancer patients with pathological stage 1 or 0 disease after neoadjuvant endocrine therapy and a low-risk biomarker profile in the surgical specimen (PEPI score 0) have an extremely low risk of relapse and are therefore unlikely to benefit from adjuvant chemotherapy.
Because estrogen contributes to the promotion and progression of breast cancer, a greater understanding of the role of estrogen in breast cancer has led to therapeutic strategies targeting estrogen synthesis, the estrogen receptor, and intracellular signaling pathways. The enzyme aromatase catalyses the final step in estrogen biosynthesis and was identified as an attractive target for selective inhibition. Modern third-generation aromatase inhibitors (AIs) effectively block the production of estrogen without exerting effects on other steroidogenic pathways. The discovery of letrozole (Femara 1 ) achieved the goal of discovering a highly potent and totally selective AI. Letrozole has greater potency than other AIs, including anastrozole, exemestane, formestane, and aminoglutethimide. Moreover, letrozole produces near complete inhibition of aromatase in peripheral tissues and is associated with greater suppression of estrogen than is achieved with other AIs. The potent anti-tumor effects of letrozole were demonstrated in several animal models. Studies with MCF-7Ca xenografts successfully predicted that letrozole would be clinically superior to the previous gold standard tamoxifen and also indicated that it may be more effective than other AIs. An extensive program of randomized clinical trials has demonstrated the clinical benefits of letrozole across the spectrum of hormone-responsive breast cancer in postmenopausal women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.