A series of cationic Ir(III) substituted bipyridyl ()(N(∧)N (N(∧)N-bpy) complexes incorporating electron-donor and -acceptor substituents, [Ir(C(∧)N-ppy-R')(2)(N(∧)N-bpy-CH═CH-C(6)H(4)-R)][X] (X(-) = PF(6)(-) or C(12)H(25)SO(3)(-)), 2 (a, R = NEt(2) and R' = Me; b, R = O-Oct and R' = Me; c, R = NO(2) and R' = C(6)H(13); C(∧)N-ppy = cyclometalated 2-phenylpyridine, [Ir(C(∧)N-ppy-Me)(2)(N(∧)N-bpy-CH═CH-thienyl-Me)][PF(6)], 2d, and the dithienylethene (DTE)-containing complex 2e have been synthesized and characterized, and their absorption, luminescence, and quadratic nonlinear optical (NLO) properties are reported. Density functional theory (DFT) and time-dependent-DFT (TD-DFT) calculations on the complexes facilitate a detailed assignment of the excited states involved in the absorption and emission processes. All five complexes are luminescent in a rigid glass at 77 K, displaying vibronically structured spectra with long lifetimes (14-90 μs), attributed to triplet states localized on the styryl-appended bipyridines. The second-order NLO properties of 2a-d and related complexes 1a-d with 1,10-phenanthrolines have been investigated by both electric field induced second harmonic generation (EFISH) and harmonic light scattering (HLS) techniques. They are characterized by high negative EFISH μβ values which decrease when the ion pair strength between the cation and the counterion (PF(6)(-), C(12)H(25)SO(3)(-)) increases. The EFISH response is mainly controlled by metal-to-ligand charge-transfer/ligand-to-ligand charge-transfer (MLCT/L'LCT) processes. A combination of HLS and EFISH techniques is used to evaluate both the dipolar and octupolar contributions to the total quadratic hyperpolarizability, demonstrating that the major contribution is controlled by the octupolar part. The incorporation of a photochromic DTE unit into the N(∧)N-bpy ligand (complex 2e) allows the luminescence to be switched ON or OFF. The photocyclisation of the DTE unit can be triggered by using either UV (365 nm) or visible light (430 nm), leading to an efficient quenching of the ligand-based 77 K luminescence, which can be restored upon irradiation of the closed form at 715 nm. In contrast, no significant modification of the EFISH μβ value is observed upon photocyclization, suggesting that the quadratic NLO response is dominated by the MLCT/L'LCT processes, rather than by the intraligand excited states localized on the substituted bipyridine ligand.
a b s t r a c tWe present the ω-calculus, a process calculus for formally modeling and reasoning about Mobile Ad Hoc Wireless Networks (MANETs) and their protocols. The ω-calculus naturally captures essential characteristics of MANETs, including the ability of a MANET node to broadcast a message to any other node within its physical transmission range (and no others), and to move in and out of the transmission range of other nodes in the network. A key feature of the ω-calculus is the separation of a node's communication and computational behavior, described by an ω-process, from the description of its physical transmission range, referred to as an ω-process interface.Our main technical results are as follows. We give a formal operational semantics of the ω-calculus in terms of labeled transition systems and show that the state reachability problem is decidable for finite-control ω-processes. We also prove that the ω-calculus is a conservative extension of the π-calculus, and that late bisimulation equivalence (appropriately lifted from the π-calculus to the ω-calculus) is a congruence. Congruence results are also established for a weak version of late bisimulation equivalence, which abstracts away from two types of internal actions: τ -actions, as in the π-calculus, and µ-actions, signaling node movement. We additionally define a symbolic semantics for the ω-calculus extended with the mismatch operator, along with a corresponding notion of symbolic bisimulation equivalence, and establish congruence results for this extension as well. Finally, we illustrate the practical utility of the calculus by developing and analyzing formal models of a leader election protocol for MANETs and the AODV routing protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.