Pancreatic β-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise β-cell identity is unknown. We show here under reversible, chronic stress conditions β-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of β-cell function and identity. Upon recovery from stress, β-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while β-cells show resilience to episodic ER stress, when episodes exceed a threshold, β-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest β-cell adaptive exhaustion contributes to diabetes pathogenesis.
Although microRNA-7 (miRNA-7) is known to regulate proliferation of cancer cells by targeting Epidermal growth factor receptor (EGFR/ERBB) family, less is known about its role in cardiac physiology. Transgenic (Tg) mouse with cardiomyocyte-specific overexpression of miRNA-7 was generated to determine its role in cardiac physiology and pathology. Echocardiography on the miRNA-7 Tg mice showed cardiac dilation instead of age-associated physiological cardiac hypertrophy observed in non-Tg control mice. Subjecting miRNA-7 Tg mice to transverse aortic constriction (TAC) resulted in cardiac dilation associated with increased fibrosis bypassing the adaptive cardiac hypertrophic response to TAC. miRNA-7 expression in cardiomyocytes resulted in significant loss of ERBB2 expression with no changes in ERBB1 (EGFR). Cardiac proteomics in the miRNA-7 Tg mice showed significant reduction in mitochondrial membrane structural proteins compared to NTg reflecting role of miRNA-7 beyond the regulation of EGFR/ERRB in mediating cardiac dilation. Consistently, electron microscopy showed that miRNA-7 Tg hearts had disorganized rounded mitochondria that was associated with mitochondrial dysfunction. These findings show that expression of miRNA-7 in the cardiomyocytes results in cardiac dilation instead of adaptive hypertrophic response during aging or to TAC providing insights on yet to be understood role of miRNA-7 in cardiac function.
Recurrent chronic mucosal inflammation, which is characteristics for inflammatory bowel diseases (IBD), triggers significant changes in the intestinal epithelial homeostasis. These changes include leakiness of the gut barrier, formation of mucosal wounds and, in most severe cases, oncogenic transformation of colonic epithelium resulting in colitis‐associated colon cancer (CAC). Altered structure and dynamics of epithelial junctions is a hallmark of intestinal inflammation, mediating epithelial barrier injury and repair. P‐cadherin (gene name: CDH3) is an important component of adherens junctions (AJ), which is poorly expressed in normal intestinal epithelium, but could be induced in inflamed and injured mucosa. The goal of this his study was to investigate the roles of P‐cadherin in regulating intestinal inflammation, mucosal repair and CAC. P‐cadherin expression was markedly induced in the colonic epithelium of human IBD patients and CAC tissues. Roles of P‐cadherin in intestinal inflammation and tumorigenesis in vivo were investigated using a mouse strain with total P‐cadherin knockout. Dextran sulfate sodium (DSS)‐induced colitis was utilized to study mucosal inflammation, whereas CAC was established using a classical azoxymetane (AOM)/DSS model. Severity of acute DSS colitis was not affected by P‐cadherin knockout, however, P‐cadherin null mice exhibited faster recovery after DSS withdrawal indicating accelerated repair of injured mucosa. No significant differences in the number and size of colonic tumors was observed in P‐cadherin null and control mice after AOM/DSS induced CAC. Consistently, CRISPR/Cas9‐mediated knockout of P‐cadherin in SK‐CO15 and HCA7 human colonic epithelial cell lines accelerated epithelial wound healing without affecting cell proliferation. The faster migration of P‐cadherin depleted cells was associated with diminished cell‐matrix adhesions and increased cell spreading. Loss of P‐cadherin resulted in activation of Src kinase and the pro‐migratory phenotype of P‐cadherin depleted cell was reversed by pharmacological inhibition of Src. Furthermore, accelerated epithelial wound healing caused by loss of P‐cadherin was prevented by Rac1 inhibition. Our findings highlight P‐cadherin as a negative regulator of intestinal epithelial would heling in vitro and mucosal repair in vivo. By contrast, this AJ protein appears to be dispensable for intestinal epithelial cell proliferation and CAC development.
Recurrent chronic mucosal inflammation, a characteristic of inflammatory bowel diseases (IBD), perturbs the intestinal epithelial homeostasis resulting in formation of mucosal wounds and, in most severe cases, leads to colitis-associated colon cancer (CAC). The altered structure of epithelial cell-cell adhesions is a hallmark of intestinal inflammation contributing to epithelial injury, repair, and tumorigenesis. P-cadherin is an important adhesion protein, poorly expressed in normal intestinal epithelial cells (IEC) but upregulated in inflamed and injured mucosa. The goal of this study was to investigate the roles of P-cadherin in regulating intestinal inflammation and CAC. P-cadherin expression was markedly induced in the colonic epithelium of human IBD patients and CAC tissues. The roles of P-cadherin were investigated in P-cadherin null mice using dextran sulfate sodium (DSS)-induced colitis and an azoxymethane (AOM)/DSS induced CAC. Although P-cadherin knockout did not affect the severity of acute DSS colitis, P-cadherin null mice exhibited faster recovery after colitis. No significant differences in the number of colonic tumors were observed in P-cadherin null and control mice. Consistently, the CRISPR/Cas9-mediated knockout of P-cadherin in human IEC accelerated epithelial wound healing without affecting cell proliferation. The accelerated migration of P-cadherin depleted IEC was driven by activation of Src kinases, Rac1 GTPase and myosin II motors and was accompanied by transcriptional reprogramming of the cells. Our findings highlight P-cadherin as a negative regulator of IEC motility in vitro and mucosal repair in vivo. In contrast, this protein is dispensable for IEC proliferation and CAC development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.