Background: Toxin-antitoxin complexes autoregulate transcription depending upon growth conditions. Results: DinJ-YafQ structure was determined, and minimal requirements for transcriptional autorepression were identified.
Conclusion:The dinJyafQ operon is regulated in a novel manner by either DinJ-YafQ-or LexA-mediated repression. Significance: Our results reveal new mechanistic insights into the action of DinJ-YafQ as a transcriptional repressor.
Bacterial type II toxin-antitoxin modules are protein–protein complexes whose functions are finely tuned by rapidly changing environmental conditions. E. coli toxin YafQ is suppressed under steady state growth conditions by virtue of its interaction with its cognate antitoxin, DinJ. During stress, DinJ is proteolytically degraded and free YafQ halts translation by degrading ribosome-bound mRNA to slow growth until the stress has passed. Although structures of the ribosome with toxins RelE and YoeB have been solved, it is unclear what residues among ribosome-dependent toxins are essential for mediating both recognition of the ribosome and the mRNA substrate given their low sequence identities. Here we show that YafQ coordinates binding to the 70S ribosome via three surface-exposed patches of basic residues that we propose directly interact with 16S rRNA. We demonstrate that YafQ residues H50, H63, D67 and H87 participate in acid-base catalysis during mRNA hydrolysis and further show that H50 and H63 functionally complement as general bases to initiate the phosphodiester cleavage reaction. Moreover YafQ residue F91 likely plays an important role in mRNA positioning. In summary, our findings demonstrate the plasticity of ribosome-dependent toxin active site residues and further our understanding of which toxin residues are important for function.
Structured mRNAs positioned downstream of the ribosomal decoding center alter gene expression by slowing protein synthesis. Here, we solved the cryo-EM structure of the bacterial ribosome bound to an mRNA containing a 3' stem loop that regulates translation. Unexpectedly, the E-site tRNA adopts two distinct orientations. In the first structure, normal interactions with the 50S and 30S E site are observed. However, in the second structure, although the E-site tRNA makes normal interactions with the 50S E site, its anticodon stem loop moves ∼54 Å away from the 30S E site to interact with the 30S head domain and 50S uL5. This position of the E-site tRNA causes the uL1 stalk to adopt a more open conformation that likely represents an intermediate state during E-site tRNA dissociation. These results suggest that structured mRNAs at the entrance channel restrict 30S subunit movement required during translation to slow E-site tRNA dissociation.
Chromosomally-encoded toxin-antitoxin complexes are ubiquitous in bacteria and regulate growth through the release of the toxin component typically in a stress-dependent manner. Type II ribosome-dependent toxins adopt a RelE-family RNase fold and inhibit translation by degrading mRNAs while bound to the ribosome. Here, we present biochemical and structural studies of the Escherichia coli YoeB toxin interacting with both a UAA stop and an AAU sense codon in pre- and post-mRNA cleavage states to provide insights into possible mRNA substrate selection. Both mRNAs undergo minimal changes during the cleavage event in contrast to type II ribosome-dependent RelE toxin. Further, the 16S rRNA decoding site nucleotides that monitor the mRNA in the aminoacyl(A) site adopt different orientations depending upon which toxin is present. Although YoeB is a RelE family member, it is the sole ribosome-dependent toxin that is dimeric. We show that engineered monomeric YoeB is active against mRNAs bound to both the small and large subunit. However, the stability of monomeric YoeB is reduced ∼20°C, consistent with potential YoeB activation during heat shock in E. coli as previously demonstrated. These data provide a molecular basis for the ability of YoeB to function in response to thermal stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.