Alzheimer's disease is characterized by the deposition of amyloid-β peptide in the brain. N-terminal truncation resulting in the formation of AβN3pE and phosphorylation at serine 8 have been reported to modify aggregation properties of amyloid-β. Biochemically, soluble, dispersible, membrane-associated, and insoluble, plaque-associated amyloid-β aggregates have been distinguished. Soluble and dispersible amyloid-β aggregates are both in mixture with the extracellular or intracellular fluid but dispersible aggregates can be cleared from proteins in solution by ultracentrifugation. To clarify the role of phosphorylated amyloid-β and AβN3pE in soluble, dispersible, membrane-associated, and plaque-associated amyloid-β aggregates in the pathogenesis of Alzheimer's disease we studied brains from 21 cases with symptomatic Alzheimer's disease, 33 pathologically preclinical Alzheimer's disease cases, and 20 control cases. Western blot analysis showed that soluble, dispersible, membrane-associated and plaque-associated amyloid-β aggregates in the earliest preclinical stage of Alzheimer's disease did not exhibit detectable amounts of AβN3pE and phosphorylated amyloid-β. This stage was referred to as biochemical stage 1 of amyloid-β aggregation and accumulation. In biochemical amyloid-β stage 2, AβN3pE was additionally found whereas phosphorylated amyloid-β was restricted to biochemical amyloid-β stage 3, the last stage of amyloid-β aggregation. Phosphorylated amyloid-β was seen in the dispersible, membrane-associated, and plaque-associated fraction. All cases with symptomatic Alzheimer's disease in our sample fulfilled biochemical amyloid-β stage 3 criteria, i.e. detection of phosphorylated amyloid-β. Most, but not all, cases with pathologically preclinical Alzheimer's disease had biochemical amyloid-β stages 1 or 2. Immunohistochemistry confirmed the hierarchical occurrence of amyloid-β, AβN3pE, and phosphorylated amyloid-β in amyloid plaques. Phosphorylated amyloid-β containing plaques were, thereby, seen in all symptomatic cases with Alzheimer's disease but only in a few non-demented control subjects. The biochemical amyloid-β stages correlated with the expansion of amyloid-β plaque deposition and with that of neurofibrillary tangle pathology. Taken together, we demonstrate that AβN3pE and phosphorylated amyloid-β are not only detectable in plaques, but also in soluble and dispersible amyloid-β aggregates outside of plaques. They occur in a hierarchical sequence that allows the distinction of three stages. In light of our findings, it is tempting to speculate that this hierarchical, biochemical sequence of amyloid-β aggregation and accumulation is related to disease progression and may be relevant for an increasing toxicity of amyloid-β aggregates.
Alzheimer's disease (AD) is a currently incurable neurodegenerative disorder and the most common form of dementia in people over the age of 65. The predominant genetic risk factor for AD is the ε4 allele encoding apolipoprotein E (ApoE4). The secreted glycoprotein Reelin, which is a physiological ligand for the multifunctional ApoE receptors Apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr), enhances synaptic plasticity. We have previously shown that the presence of ApoE4 renders neurons unresponsive to Reelin by impairing the recycling of the receptors, thereby decreasing its protective effects against amyloid β (Aβ) oligomer-induced synaptic toxicity in vitro. Here, we show that when Reelin was knocked out in adult mice, these mice behaved normally without overt learning or memory deficits. However, they were strikingly sensitive to amyloid-induced synaptic suppression, and had profound memory and learning disabilities at very low amounts of amyloid deposition. Our findings highlight the physiological importance of Reelin in protecting the brain against Aβ-induced synaptic dysfunction and memory impairment.
Apolipoprotein E (apoE) plays a role in the pathogenesis of Alzheimer disease (AD). It is involved in the receptor-mediated cellular clearance of the amyloid beta-protein (Abeta) and in the perivascular drainage of the extracellular fluid. Microvascular changes are also associated with AD and have been discussed as a possible reason for altered perivascular drainage. To further clarify the role of apoE in the perivascular and vascular pathology in AD patients, we studied its occurrence and distribution in the perivascular space, the perivascular neuropil, and in the vessel wall of AD and control cases with and without small vessel disease (SVD). Apolipoprotein E was found in the perivascular space and in the neuropil around arteries of the basal ganglia from control and AD cases disclosing no major differences. Western blot analysis of basal ganglia tissue also revealed no significant differences pertaining to the amount of full-length and C-terminal truncated apoE in AD cases compared with controls. In contrast, Abeta occurred in apoE-positive perivascular astrocytes in AD cases but not in controls. In blood vessels, apoE and immunoglobulin G were detected within the SVD-altered vessel wall. The severity of SVD was associated with the occurrence of apoE in the vessel wall and with that of Abeta in perivascular astrocytes. These results point to an important role of apoE in the perivascular clearance of Abeta in the human brain. The occurrence of apoE and immunoglobulin G in SVD lesions and in the perivascular space suggests that the presence of SVD results in plasma-protein leakage into the brain. It is therefore tempting to speculate that apoE represents a pathogenetic link between SVD and AD.
An early role of amyloid- peptide (A) aggregation in Alzheimer's disease pathogenesis is well established. However, the contribution of intracellular or extracellular forms of A to the neurodegenerative process is a subject of considerable debate. We here describe transgenic mice expressing A 1-40 (APP47) and A 1-42 (APP48) with a cleaved signal sequence to insert both peptides during synthesis into the endoplasmic reticulum. Although lower in transgene mRNA, APP48 mice reach a higher brain A concentration. The reduced solubility and increased aggregation of A 1-42 may impair its degradation. APP48 mice develop intracellular A lesions in dendrites and lysosomes. The hippocampal neuron number is reduced already at young age. The brain weight decreases during aging in conjunction with severe white matter atrophy. The mice show a motor impairment. Only very few A 1-40 lesions are found in APP47 mice. Neither APP47 nor APP48 nor the bigenic mice develop extracellular amyloid plaques. While intracellular membrane expression of A 1-42 in APP48 mice does not lead to the AD-typical lesions, A aggregates develop within cells accompanied by considerable neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.