Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by eliciting reversible changes in the phenotype of cancer cells.
The pim-1 oncogene is regulated by hematopoietic cytokine receptors, encodes a serine/threonine protein kinase, and cooperates with c-myc in lymphoid cell transformation. Using a yeast two-hybrid screen, we found that Pim-1 protein binds to p100, a transcriptional coactivator that interacts with the c-Myb transcription factor. Pim-1 phosphorylated p100 in vitro, formed a stable complex with p100 in animal cells, and functioned downstream of Ras to stimulate c-Myb transcriptional activity in a p100-dependent manner. Thus, Pim-1 and p100 appear to be components of a novel signal transduction pathway affecting c-Myb activity, linking all three to the cytokine-regulated control of hematopoietic cell growth, differentiation, and apoptosis.
Background Maintenance therapy following autologous stem cell transplantation can delay disease progression and prolong survival in multiple myeloma (MM). Ixazomib is ideally suited for maintenance therapy given its efficacy, convenient once-weekly oral dosing, and low toxicity profile. Methods The phase 3, double-blind, placebo-controlled, TOURMALINE-MM3 study randomised 656 patients with newly diagnosed MM from 227 clinical/hospital sites in 30 countries in Europe, the Middle East, Africa,
Pevonedistat (TAK-924/MLN4924) is a novel inhibitor of NEDD8-activating enzyme (NAE) with single-agent activity in relapsed/refractory acute myeloid leukemia (AML). We performed a phase 1b study of pevonedistat (PEV) with azacitidine (AZA) based on synergistic activity seen preclinically. Primary objectives included safety and tolerability, and secondary objectives included pharmacokinetics (PK) and disease response. Patients ≥60 years with treatment-naive AML (unfit for standard induction therapy) received PEV 20 or 30 mg/m IV on days 1, 3, and 5 combined with fixed-dose AZA (75 mg/m IV/subcutaneously) on days 1 to 5, 8, and 9, every 28 days. The most common treatment-emergent adverse events were constipation (48%), nausea (42%), fatigue (42%), and anemia (39%). In total, 11 deaths were observed and considered unrelated to study therapy by the investigators. Transient elevations in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were dose limiting. The recommended phase 2 dose (RP2D) of PEV in this combination is 20 mg/m PEV PK was not altered by the addition of AZA. Overall response rate (ORR) based on an intent-to-treat analysis was 50% (20 complete remissions [CRs], 5 complete remission with incomplete peripheral count recovery, 7 partial remissions [PRs]), with an 8.3-month median duration of remission. In patients receiving ≥6 cycles of therapy (n = 23, 44%), ORR was 83%. In patients with TP53 mutations, the composite CR/PR rate was 80% (4/5). Two of these patients stayed on study for >10 cycles. Baseline bone marrow blast percentage or cytogenetic/molecular risk did not influence ORR. This study was registered at www.clinicaltrials.gov as #NCT01814826.
The c-Myb transcription factor is a proto-oncoprotein whose latent transforming activity can be unmasked by truncation of either terminus. Because both ends of Myb are involved in negative regulation, we tested whether they could associate in a two-hybrid assay and identified a carboxy-terminal motif that interacts with the amino-terminal DNA-binding domain. The EVES motif is highly conserved in vertebrate c-Myb proteins and contains a known site of phosphorylation previously implicated in the negative regulation of c-Myb. Interestingly, a related EVES motif is present in pl00, a ubiquitously expressed transcriptional coactivator found in diverse species. We show that plO0 interacts with and influences the activity of c-Myb, implicating it in the regulation of c-Myb, differentiation, and cell growth. Our results suggest that Myb is regulated by a novel mechanism in which intramolecular interactions and conformational changes control the intermolecular associations among Myb, pl00, and the transcriptional apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.