Pengguna media sosial berisiko mengalami gangguan kesehatan mental. Masalah kesehatan mental dapat terjadi dengan cyberbullying. Cyberbullying yang terjadi di media sosial berupa komentar kasar, ancaman, hinaan, fitnah bahkan pelecehan yang diberikan oleh netizen. Cyberbullying dapat menggoyahkan kondisi kesehatan mental seseorang bahkan berdampak pada bunuh diri. Cyberbullying akan sangat merugikan baik secara mental maupun produktif. Cyberbullying harus dideteksi sejak dini untuk mencegah dampak buruk bagi pengguna media sosial. Dengan kemajuan teknologi, dapat digunakan untuk mendeteksi cyberbullying yang terjadi di media sosial. Artikel ini menggunakan pendekatan metode literature review yaitu narrative literature review 10 artikel pemanfaatan teknologi pendeteksi cyberbullying periode 2011 – 2021 dengan tujuan untuk mengetahui komentar cyberbullying pada akun/postingan seseorang. Oleh karena itu, deteksi cyberbullying mencoba mengumpulkan dataset global di media sosial (Facebook, Instagram, Twitter, dll), dengan mengklasifikasikan metode Machine Learning. Setiap metode algoritma dievaluasi menggunakan akurasi, presisi, recall, dan skor F1 untuk menentukan kinerja tingkat klasifikasi Keywords:Cyberbullying, Media Sosial, Gangguan Kesehatan Mental Social media users are at risk for mental health disorders. Mental health problems can occur with cyberbullying. Cyberbullying that occurs on social media is in the form of rude comments, threats, insults, slander and even harassment given by netizens. Cyberbullying can destabilize a person's mental health condition and even lead to suicide. Cyberbullying will be very detrimental both mentally and productively. Cyberbullying must be detected early to prevent adverse effects on social media users. With advances in technology, it can be used to detect cyberbullying that occurs on social media. This article uses a literature review method approach, namely a narrative literature review of 10 articles on the use of cyberbullying detection technology for the period 2011 – 2021 with the aim of finding out cyberbullying comments on someone's account/post. Therefore, cyberbullying detection tries to collect global datasets on social media (Facebook, Instagram, Twitter, etc.), by classifying Machine Learning methods. Each algorithm method is evaluated using accuracy, precision, recall, and F1 scores to determine the classification level performance Keywords: Cyberbullying, Social Media, Mental Health Disorders
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.