Drying is a significant step in the production of carrageenan. However, current drying process still deals with too long drying time and carrageenan quality degradation. The foam mat drying is an option to speed up drying process as well as retaining carrageenan quality. In this case, the carrageenan was mixed with egg white (albumin) as foaming agent and methyl cellulose for foam stabilizer. The foam will break the carrageenan gels and creates the porous structure resulting higher surface area for water transfer. This research studied the effect of egg white and methyl cellulose on carrageenan drying at various air temperature, and thickness. As a response, the water content versus time was observed and the drying rate was estimated. Meanwhile, the carrageenan texture was verified by X-RD (X-Ray Diffraction) and TEM (Transmission Electron Microscopy). Results showed that the presence of egg white stablized by methyl cellulose can speed up drying rate as well as retaining the crystalline structure of carrageenan. The higher albumin content, the faster drying rate. However, the addition of albumin and methyl cellulose restricted not more than 30 % in the mixture for keeping carrageenan quality and purity. By adding egg white 20 % and methyl cellulose 10 %, the water diffusion and drying rate can be two fold compared with carrageenan drying without foam. The improvement can be higher at the higher temperature and thinner carrageenan sheets.
The ultrasound-assisted depolymerization of κ-carrageenan has been studied at various temperatures and times. The κ-carrageenan with initial molecular weight of 545 kDa was dispersed in water to form a 5 g/L solution, which was then depolymerized in an ultrasound device at various temperatures and times. The viscosity of the solution was measured using Brookfield viscometer, which was then used to find the number-average molecular weight by Mark-Houwink equation. To obtain the kinetics of κcarrageenan depolymerization, the number-average molecular weight data was treated using midpoint-chain scission kinetics model. The pre-exponential factor and activation energies for the reaction are 2.683×10 -7 mol g -1 min -1 and 6.43 kJ mol -1 , respectively. The limiting molecular weight varies from 160 kDa to 240 kDa, and it is linearly correlated to temperature. The results are compared to the result of thermal depolymerization by calculating the half life. It is revealed that ultrasound assisted depolymerization of κ-carrageenan is faster than thermal depolymerization at temperatures below 72.2°C. Compared to thermal depolymerization, the ultrasound-assisted process has lower values of Ea, ΔG ‡ , ΔH ‡ , and ΔS ‡ , which can be attributed to the ultrasonically induced breakage of non-covalent bonds in κ-carrageenan molecules.
Applying dehumidified air is considered as an option to retain quality in carrageenan drying. This work concerns the effects of operational temperature, air velocity, and carrageenan thickness on the progress of drying and product quality when using dehumidified air. Final product quality and progress of drying were measured by experiments, and a two dimensional model was developed to analyze progress of drying for the different operational conditions. The experimental and modeling results showed that air dehumidification with zeolite reduces the drying time the most at low temperatures. Under these conditions the carrageenan qualities whiteness and gel strength are the least affected by the exposure to the drying temperature. The drying time is the shortest at 120°C, but at this temperature the carrageenan quality degrades the most and is not be improved by air dehumidification. Moreover, the quality is improved by increasing the air velocity and by drying thin carrageenan sheets.
Abstract. The coastal areas in Indonesia often have a problem of clean water lack, because the water is classified as brackish water. Therefore, this research investigated the fabrication of CA membranes using phase inversion method for brackish water treatment. Investigation was conducted to study the effect of combination dope composition and evaporation time on separation performance and morphology of the memrbane. Membrane was fabricated by dry-wet phase inversion technique with variation of polymer concentration 17, 18 and 20 wt% in the total solid and evaporation time of 5, 10 and 15 seconds, respectively. The asymmetric membranes were characterized by permeability test through rejection and flux measurements using brackish water as feed. The experimental results from SEM images analysis showed that all the membranes have a thin small porous layer and thicker sub-structure of larger porous layer formed asymmetric membrane. Moreover, the greater polymer concentration is resulting smaller pore size and smaller membrane porosity. The longer evaporation time was also resulted in denser membrane active layer. The best membrane performance was observed at the composition of 20 wt% CA polymer, 1 wt % polyethylene glycol with the solvent evaporation time of 15 seconds.
This study aimed to enhance the properties of CaCl2 crosslinked sodium alginate/k-carrageenan (SA/KC) incorporated with clove essential oil (CEO). An evaluation of the modification effects on physicochemical, morphological, antioxidant, and antibacterial properties was performed. The properties were observed at various SA/KC ratios (10/0 to 1.5/1), CEO (1.5% to 3%), and CaCl2 (0% to 2%). The surface morphology was improved by addition of KC and CaCl2. The Fourier transform infrared (FTIR) result showed insignificant alteration of film chemical structure. The X-ray diffraction (XRD) result confirmed the increased crystallinity index of the film by CaCl2 addition. On physicochemical properties, a higher proportion of SA/KC showed the declined tensile strength, meanwhile both elongation at break and water solubility were increased. The incorporated CEO film reduced both tensile strength and water solubility; however, the elongation at break was significantly increased. The presence of Ca2+ ions remarkably increased the tensile strength despite decreased water solubility. Overall, the addition of KC and CaCl2 helped in repairing the mechanical properties and flexibility. CEO incorporation showed the effectiveness of profiling the antioxidant and antimicrobial activity indicated by high 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity up to 90.32% and inhibition zone of E. coli growth up to 113.14 mm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.