Fermented food products, especially those derived from cereals and legumes are important contributors to diet diversity globally. These food items are vital to food security and significantly contribute to nutrition. Fermentation is a process that desirably modifies food constituents by increasing the palatability, organoleptic properties, bioavailability and alters nutritional constituents. This review focuses on deciphering possible mechanisms involved in the modification of nutritional constituents as well as nutrient bioavailability during the fermentation of cereals and legumes, especially those commonly consumed in developing countries. Although modifications in these constituents are dependent on inherent and available nutrients in the starting raw material, it was generally observed that fermentation increased these nutritive qualities (protein, amino acids, vitamins, fats, fatty acids, etc.) in cereals and legumes, while in a few instances, a reduction in these constituents was noted. A general reduction trend in antinutritional factors was also observed with a corresponding increase in the nutrient bioavailability and bioaccessibility. Notable mechanisms of modification include transamination or the synthesis of new compounds during the fermentation process, use of nutrients as energy sources, as well as the metabolic activity of microorganisms leading to a degradation or increase in the level of some constituents. A number of fermented products are yet to be studied and fully understood. Further research into these food products using both conventional and modern techniques are still required to provide insights into these important food groups, as well as for an overall improved food quality, enhanced nutrition and health, as well as other associated socioeconomic benefits.
The overarching challenges of mycotoxin contamination in food necessitate the development of strategies to be implemented to combat their effects thereof. Common processing techniques have been utilised but do not necessarily meet the desired efficacy. This review appraises studies on novel non-thermal food processing techniques, particularly high pressure processing, pulsed electric filed, cold plasma and ultrasound processing for the decontamination of mycotoxins in food. Although available studies on these techniques have suggested a reduction of mycotoxins and in some instances, complete decontamination of mycotoxins was also reported. The mechanisms by which reduction/elimination occurs include through decomposition of toxins after collision with ions/electrons leading to cleavage of bonds, structural degradation of the mycotoxins structure and cleavage of functional groups. Additional studies into the toxicity of degraded products and the composition of the food products are still required to ensure a more widespread adoption of these techniques to enhance food safety.
Effects of frying treatments on texture (hardness) and colour parameters (L,a,b,ΔE) during deep fat frying of yellow fleshed cassava root slices (TMS 01/1371) were investigated. Slices (dimension of 40 mm × 25 mm × 3 mm) were divided into three portions and subjected to vacuum frying (fresh slices) and atmospheric frying (fresh and predried slices) and equivalent thermal driving forces (ETDF) of 60°C, 70°C, and 80°C were maintained during frying. The quality attributes investigated were best preserved in vacuum fried chips. The overall colour change in chips fried under vacuum conditions at 118°C and 8 min was the least (21.20) compared to fresh and atmospherically predried ones (16.69 and 14.81, resp.). A sharp reduction in the breaking force was obtained for all frying treatments after 8 min and this effect was the least in vacuum fried chips. First-order kinetics modeled the changes in quality attributes for all the temperatures investigated. Rate constants k (min−1) obtained for vacuum frying were almost equal to that of atmospheric frying while activation energies for hardness and colour change were 53.30 and 467.11 KJ/mol, respectively. Quality attributes studied were best preserved during vacuum frying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.