Background and objectives: The chromosomal abnormalities are one of the important causes of male infertility. In view of the genetic risks for the next generation, the importance of careful evaluation of karyotype is essential. The objective of this study was to determine the frequency of chromosomal abnormalities in infertile men with primary infertility from Indian population. Materials and Methods:The 78 infertile men with primary infertility, out of which 26 men were azoospermic, 19 men were oligospermic, 4 men were asthenospermic and 29 men were oligoasthenospermic were studied. Karyoptying was performed on peripheral blood lymphocytes by using the Giemsa trypsin banding (GTG) banding technique. Additional data was collected from published studies in Indian population leading to a total of 1814 cases.Results: Chromosome analysis of 78 infertile males showed major chromosome abnormalities in 10.2%, with 6.4% in autosomal chromosome abnormalities and 3.8% in sex chromosome abnormalities. The incidence of major chromosome abnormalities in oligospermic males were 21% and azoospermic males were 15.4 %. Chromosomal polymorphic variants were identified to be 16.7%. Combining the data from other published studies identified 153/ 1814 (8.4%) infertile men of chromosomal abnormalities; with 10.8% in azoospermia, 7.3% in oligospermia and 7.3% in oligoasthenoteratospermic from India.
A mutually miscible homopolymer (here Poly methyl methacrylate; PMMA) was employed to tailor the interfacial properties of an immiscible polycarbonate/styrene acrylonitrile (PC/SAN) blends. In order to design materials that can shield microwave radiations, one of the key properties i.e. electrical conductivity was targeted here using a conducting inclusion; multiwall carbon nanotubes (MWNTs). Owing to higher polarity, MWNTs prefers PC over SAN which though enhances the electrical conductivity of the blends but doesn't improve the interfacial properties and resulted in poor mechanical properties. Hence, an efficient strategy has been adopted here to simultaneously enhance mechanical, electrical and microwave attenuation properties. Herein, the MWNTs were wrapped by PMMA via in situ polymerization of MMA (methyl methacrylate). This strategy resulted in migration of PMMA modified MWNTs towards the blend's interface and resulted in an effective stress transfer across the interface leading to improved mechanical and dynamic mechanical properties. Interestingly, the bulk electrical conductivity of the blends was also enhanced manifesting the improved dispersion of MWNTs. The state of dispersion of MWNTs and the phase morphology was assessed using scanning electron microscopy. The microwave attenuation properties were evaluated using a vector network analyzer (VNA) in X and K uband frequencies. The blends with PMMA wrapped MWNTs manifested in -21 dB of shielding effectiveness which suggests attenuation of more than 99% of the incoming microwave radiation. More interestingly, the attenuation constant could be tuned here employing this unique strategy. This study clearly opens a new tool box in designing materials that show improved mechanical, dynamic mechanical, electrical conductivity and microwave shielding properties.
We present a case with a 4p terminal deletion, evidenced in GTG-banded chromosome study. Phenotypic signs described in the classical Wolf–Hirschhorn syndrome were found on clinical examination of our patient.
Background: Dexamethasone (DEX) is a glucocorticosteroid used in the treatment of steroid-responsive inflammatory conditions of the eye. The currently marketed formulations pose several issues, like poor drug residence time, resulting in frequent administration of the formulation, making them less effective. Objective: The present study aims to provide comprehensive data encompassing the designing, optimization, development, and characterization of DEX nanoemulsion (DEX NE) for treating inflammatory conditions of the anterior segment of the eye by employing the Quality by Design (QbD) approach. Methods: A Plackett-Burman Design (PBD) was employed to screen seven independent variables, such as oil concentration, surfactant concentration, polymer concentration, homogenization speed and time, microfluidization pressure and cycles, and their influence on critical quality attributes (CQAs), such as globule size, zeta potential, and viscosity, was evaluated. Furthermore, the Box-Behnken design (BBD) was employed for optimization, and design space was generated to obtain the optimized DEX NE. Results: The experimental results after DEX NE characterization reveal a globule size of 181 ±90 nm with a zeta potential of -21.03 ±1.68 mV and a viscosity of 19.99 cp. Furthermore, the drug release study of simulated tear fluid demonstrated prolonged and steady release for up to 48 hr. Cytotoxicity assay of DEX NE exhibited good cell viability. Conclusion: All these findings pave the way for a better understanding of developing a robust, safe, and non-toxic formulation for ocular drug delivery. other: -
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.