A pipeline’s resistance to collapse is governed by geometric imperfections, material properties and residual stresses. The offshore pipeline design code DNV-OS-F101 provides a method for predicting collapse of pipelines with diameter to wall thickness (D/t) ratios between 15 and 45. This paper examined the various factors that could influence the collapse resistance of several pipe geometries, such as ovality, eccentricity, material stress-strain behavior and residual stresses in the hoop and longitudinal directions. A total of 132 cases were carried out, using 2D and 3D Nonlinear Finite Element Analysis, to predict the collapse pressure of several realistic pipe geometries. Results of this study suggest that the DNV-OS-F101 predictions are conservative and applicable for a wide range of D/t ratios. While there is close correlation between Finite Element prediction and DNV-OS-F101 prediction, there is a degree of conservatism at low D/t ratios using DNV-OS-F101 equations. Hence there would be scope for further optimization of pipe wall thickness design against the collapse limit state at low D/t ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.