Using the multi-integral field spectrograph GIRAFFE at VLT, we have derived the K-band Tully-Fisher relation (TFR) at z ∼ 0.6 for a representative sample of 65 galaxies with emission lines (W 0 (OII) ≥ 15 Å). We confirm that the scatter in the z ∼ 0.6 TFR is caused by galaxies with anomalous kinematics, and find a positive and strong correlation between the complexity of the kinematics and the scatter that they contribute to the TFR. Considering only relaxed-rotating disks, the scatter, and possibly also the slope, of the TFR, do not appear to evolve with redshift. We detect an evolution of the K-band TFR zero point between z ∼ 0.6 and z = 0, which, if interpreted as an evolution of the K-band luminosity of rotating disks, would imply that a brightening of 0.66 ± 0.14 mag occurs between z ∼ 0.6 and z = 0. Any disagreement with the results of Flores et al. (2006, A&A, 455, 107) are attributed to both an improvement of the local TFR and the more detailed accurate measurement of the rotation velocities in the distant sample. Most of the uncertainty can be explained by the relatively coarse spatial-resolution of the kinematical data. Because most rotating disks at z ∼ 0.6 are unlikely to experience further merging events, one may assume that their rotational velocity, which is taken as a proxy of the total mass, does not evolve dramatically. If true, our result implies that rotating disks observed at z ∼ 0.6 are rapidly transforming their gas into stars, to be able to double their stellar masses and be observed on the TFR at z = 0. The rotating disks observed are indeed emission-line galaxies that are either starbursts or LIRGs, which implies that they are forming stars at a high rate. Thus, a significant fraction of the rotating disks are forming the bulk of their stars within 6 to 8 Gyr, in good agreement with former studies of the evolution of the mass-metallicity relationship.
We present results from a homogeneous analysis of the broadband 0.3 − 10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterise warm absorbers (WAs) along the line-of-sight to the active nucleus. We significantly detect WAs in 65% of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates . We find a gap in the distribution of the ionisation parameter in the range 0.5 < log ξ < 1.5 which we interpret as a thermally unstable region for WA clouds. This may indicate that the warm absorber flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe Kα lines are similar to those sources which do not have broadened emission lines. Therefore the detected broad Fe Kα emission lines are bonafide and not artifacts of ionised absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionisation parameter versus column density. The shallow slope of the log ξ versus log v out linear regression (0.12 ± 0.03) is inconsistent with the scaling laws predicted by radiation or magneto-hydrodynamic-driven winds. Our results suggest also that WA and Ultra Fast Outflows (UFOs) do not represent extreme manifestation of the same astrophysical system.
Nearly half the stellar mass of present-day spiral galaxies has formed since z = 1, and galaxy kinematics is an ideal tool to identify the underlying mechanisms responsible for the galaxy mass assembly since that epoch. Here, we present the first results of the ESO large program, "IMAGES", which aims at obtaining robust measurements of the kinematics of distant galaxies using the multi-IFU mode of GIRAFFE on the VLT. 3D spectroscopy is essential to robustly measure the often distorted kinematics of distant galaxies (e.g., Flores et al. 2006, A&A, 455, 107). We derive the velocity fields and σ-maps of 36 galaxies at 0.4 < z < 0. 10 M emission line galaxies in this redshift range, and are largely unaffected by cosmic variance. Taking into account all galaxies -with or without emission lines -in that redshift range, we find that at least 41 ± 7% of them have anomalous kinematics, i.e., they are not dynamically relaxed. This includes 26 ± 7% of distant galaxies with complex kinematics, i.e., they are not simply pressure or rotationally supported. Our result implies that galaxy kinematics are among the most rapidly evolving properties, because locally, only a few percent of the galaxies in this mass range have complex kinematics. It is well-established that galaxies undergoing a merger have complex large-scale motions and thus are likely responsible for the strong evolution of the galaxy kinematics that we observe.
Using a two-dimensional galaxy image decomposition technique, we extract global bulge and disk parameters for a complete sample of early type disk galaxies in the near infrared K band. We find significant correlation of the bulge parameter n with the central bulge surface brightness µ b (0) and with effective radius r e . Using bivariate analysis techniques, we find that log n, log r e and µ b (0) are distributed in a plane with small scatter. We do not find a strong correlation of n with bulge-to-disk luminosity ratio, contrary to earlier reports. r e and the disk scale length r d are well correlated for these early type disk galaxies, but with large scatter. We examine the implications of our results to various bulge formation scenarios in disk galaxies.
We report optical extinction properties of dust for a sample of 26 early-type galaxies based on the analysis of their multicolour CCD observations. The wavelength dependence of dust extinction for these galaxies is determined and the extinction curves are found to run parallel to the Galactic extinction curve, which implies that the properties of dust in the extragalactic environment are quite similar to those of the Milky Way. For the sample galaxies, value of the parameter R V , the ratio of total extinction in V band to selective extinction in B and V bands, lies in the range 2.03−3.46 with an average of 3.02, compared to its canonical value of 3.1 for the Milky Way. A dependence of R V on dust morphology of the host galaxy is also noticed in the sense that galaxies with a well defined dust lane show tendency to have smaller R V values compared to the galaxies with disturbed dust morphology. The dust content of these galaxies estimated using total optical extinction is found to lie in the range 10 4 to 10 6 M , an order of magnitude smaller than those derived from IRAS flux densities, indicating that a significant fraction of dust intermixed with stars remains undetected by the optical method. We examine the relationship between dust mass derived from IRAS flux and the X-ray luminosity of the host galaxies.The issue of the origin of dust in early-type galaxies is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.