Long distance runners with ITBS have weaker hip abduction strength in the affected leg compared with their unaffected leg and unaffected long-distance runners. Additionally, symptom improvement with a successful return to the preinjury training program parallels improvement in hip abductor strength.
The role played by anatomic factors in ACL injury remains elusive. In this study, objective methods were used to characterize ACL volume, tibial slopes, and notch geometry from ACL-injured and matched control subjects. The study tested four hypotheses: 1) the medial tibial plateau slope is steeper posteriorly in the injured group compared to the non-injured group, 2) the lateral tibial plateau slope is steeper posteriorly in the injured group compared to the non-injured group, 3) the femoral intercondylar notch dimensions are smaller in the injured group compared to the non-injured group and 4) the ACL volume, tibial plateau slopes and intercondylar notch dimensions are all independent of each other. Fifty-four subjects were divided into two groups, those who had suffered a non-contact ACL injury and those who still had two healthy ACLs, matched to the injured subjects by gender, age, height and weight. The lateral tibial plateaus in the uninjured contralateral knees of the injured subjects had a significantly steeper posterior slope (1.8° vs. −0.3°), a factor that potentially contributed to the ACL injury in the opposite knee. The intercondylar notch dimensions were found to be smaller in the injured subjects, potentially putting the ACL at risk of impingement, and intercondylar notch volume was correlated to ACL volume (r=0.58). Discriminant analysis showed that the notch width at the inlet was the best single predictor of ACL injury.
This review examines a mechanism for the initiation of osteoarthritis after anterior cruciate ligament (ACL) injury by considering the relationship between reported ambulatory changes after ACL injury, cartilage adaptation to load, and the association between cartilage loads during walking and regional variations in cartilage structure and biology. Taken together, these observations suggest that cartilage degeneration after ACL injury could be caused by a kinematic gait change that shifts ambulatory loading applied to cartilage. Such a shift may cause regions of cartilage to become newly loaded, be subjected to altered levels of compression and tension, or become unloaded. The metabolic sensitivity of chondrocytes to such changes in their mechanical environment, combined with the low adaptation potential of mature cartilage, could lead to cartilage degeneration and premature osteoarthritis after ACL injury. This proposed mechanism demonstrates the value of using the ACL injury model to understand the relationship between mechanics and biology, as well as helping to explain the importance of restoring normal ambulatory kinematics after ACL injury to avoid premature osteoarthritis.
Study Design Controlled laboratory study. Background Anterior cruciate ligament (ACL) injury may result in neuroplastic changes due to lost mechanoreceptors of the ACL and compensations in neuromuscular control. These alterations are not completely understood. Assessing brain function after ACL injury and anterior cruciate ligament reconstruction (ACLR) with functional magnetic resonance imaging provides a means to address this gap in knowledge. Objective To compare differences in brain activation during knee flexion/extension in persons who have undergone ACLR and in matched controls. Methods Fifteen participants who had undergone left ACLR (38.13 ± 27.16 months postsurgery) and 15 healthy controls matched on age, sex, height, mass, extremity dominance, education level, sport participation, and physical activity level participated. Functional magnetic resonance imaging data were obtained during a unilateral knee motor task consisting of repeated cycles of knee flexion and extension. Results Participants who had undergone ACLR had increased activation in the contralateral motor cortex, lingual gyrus, and ipsilateral secondary somatosensory area and diminished activation in the ipsilateral motor cortex and cerebellum when compared to healthy matched controls. Conclusion Brain activation for knee flexion/extension motion may be altered following ACLR. The ACLR brain activation profile may indicate a shift toward a visual-motor strategy as opposed to a sensory-motor strategy to engage in knee movement. Level of Evidence Cohort, level 3. J Orthop Sports Phys Ther 2017;47(3):180-189. Epub 5 Nov 2016. doi:10.2519/jospt.2017.7003.
Combined knee valgus and internal rotation moments increases ACL strain more than either alone. The combination of a valgus and internal rotational moment at magnitudes that occurs in vivo during landing can cause ACL strains that may be high enough to cause ACL rupture. This predicted high ACL strain and the contact force location suggest that combined valgus and internal tibial rotational moments during single-leg landing are relevant to ACL injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.