In this article, a compact concentric structured monopole patch antenna for super wideband (SWB) application is proposed and investigated. The essential characteristics of the designed antenna are: (i) to attain super-wide bandwidth characteristics, the proposed antenna is emerged from a traditional circular monopole antenna and has obtained an impedance bandwidth of 38.9:1 (ii) another important characteristic of the presented antenna is its larger bandwidth dimension ratio (BDR) value of 6596 that is accomplished by augmenting the electrical length of the patch. The electrical dimension of the proposed antenna is 0.18λ×0.16λ (λ corresponds to the lower end operating frequency). The designed antenna achieves a frequency range from 1.22 to 47.5 GHz with a fractional bandwidth of 190% and exhibiting S11 < −10 dB in simulation. For validating the simulated outcomes, the antenna model is fabricated and measured. Good conformity is established between measured and simulated results. Measured frequency ranges from 1.25 to 40 GHz with a fractional bandwidth of 188%, BDR of 6523 and S11 < −10 dB. Even though the presented antenna operates properly over the frequency range from 1.22 to 47.5 GHz, the results of the experiment are measured till 40 GHz because of the high-frequency constraint of the existing Vector Network Analyzer (VNA). The designed SWB antenna has the benefit of good gain, concise dimension, and wide bandwidth above the formerly reported antenna structures. Simulated gain varies from 0.5 to 10.3 dBi and measured gain varies from 0.2 to 9.7 dBi. Frequency domain, as well as time-domain characterization, has been realized to guide the relevance of the proposed antenna in SWB wireless applications. Furthermore, an equivalent circuit model of the proposed antenna is developed, and the response of the circuit is obtained. The presented antenna can be employed in L, S, C, X, Ka, K, Ku, and Q band wireless communication systems.
This paper presents the design and implementation of a low-noise amplifier (LNA) for millimeter-wave (mm-Wave) 5G wireless applications. The LNA was based on a common-emitter configuration with cascode amplifier topology using an IHP’s 0.13 μm Silicon Germanium (SiGe) heterojunction bipolar transistor (HBT) whose f_T/f_MAX/gate-delay is 360/450 GHz/2.0 ps, utilizing transmission lines for simultaneous noise and input matching. A noise figure of 3.02–3.4 dB was obtained for the entire wide bandwidth from 20 to 44 GHz. The designed LNA exhibited a gain (S_21) greater than 20 dB across the 20–44 GHz frequency range and dissipated 9.6 mW power from a 1.2 V supply. The input reflection coefficient (S_11) and output reflection coefficient (S_22) were below −10 dB, and reverse isolation (S_12) was below −55 dB for the 20–44 GHz frequency band. The input 1 dB (P1dB) compression point of −18 dBm at 34.5 GHz was obtained. The proposed LNA occupies only a 0.715 mm2 area, with input and output RF (Radio Frequency) bond pads. To the authors’ knowledge, this work evidences the lowest noise figure, lowest power consumption with reasonable highest gain, and highest bandwidth attained so far at this frequency band in any silicon-based technology.
A compact concentric structured monopole antenna for super wide band (SWB) applications with triple notch band characteristics is designed and experimentally validated. The antenna covers an immense impedance bandwidth (1.6–47.5 GHz) with sharp triple notch bands at 1.8–2.2 GHz, 4–7.2 GHz, and 9.8–10.4 GHz to eliminate interference from co-existing advanced wireless services (AWS), C bands, and X bands, respectively. By loading an E-shaped stub connected at the top of the patch and by etching a split elliptical slot at the lower end of the radiating patch, the band rejection characteristics from 1.8–2.2 GHz for the AWS and 4–7.2 GHz for the C band are achieved, respectively. Further, by making use of a C-shaped resonator near the feed line, band rejection from 9.8–10.4 GHz for the X band is obtained. By varying the parameters of the antenna, the notch bands are controlled independently over a wide range of frequencies. The antenna provides good radiation characteristics, constant group delay response, and better gain over the pass band. The experimental results indicate that the designed antenna offers a remarkable reduction in gain and high variation in group delay over the stop bands. To characterize the wideband property and linear phase response of the designed antenna, its time-domain performance is extensively described and evaluated, which assure pulse transmission with minimum distortion.
No abstract
A low phase noise, power efficient VCO using UMC 0.18μm CMOS technology has been proposed in this paper. The proposed VCO has a tuning range of 9.71GHz to 9.9GHz, with a phase noise of -79.88 dBc/Hz @ 600kHz offset. The Vtune ranging between 1V - 1.5V generates sustained oscillations. The maximum power consumption of the VCO is 11.9mW using a supply voltage of 1.8V with ±10% variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.