[1] The broad distribution and often high densities of the cyanobacterium Trichodesmium spp. in oligotrophic waters imply a substantial role for this one taxon in the oceanic N cycle of the marine tropics and subtropics. New results from 154 stations on six research cruises in the North Atlantic Ocean show depth-integrated N 2 fixation by Trichodesmium spp. at many stations that equalled or exceeded the estimated vertical flux of NO 3 À into the euphotic zone by diapycnal mixing. Areal rates are consistent with those derived from several indirect geochemical analyses. Direct measurements of N 2 fixation rates by Trichodesmium are also congruent with upper water column N budgets derived from parallel determinations of stable isotope distributions, clearly showing that N 2 fixation by Trichodesmium is a major source of new nitrogen in the tropical North Atlantic. We project a conservative estimate of the annual input of new N into the tropical North Atlantic of at least 1.6 Â 10 12 mol N by Trichodesmium N 2 fixation alone. This input can account for a substantial fraction of the N 2 fixation in the North Atlantic inferred by several of the geochemical approaches.
Abstract. Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851).
The fresh water discharged by large rivers such as the Amazon is transported hundreds to thousands of kilometers away from the coast by surface plumes. The nutrients delivered by these river plumes contribute to enhanced primary production in the ocean, and the sinking flux of this new production results in carbon sequestration. Here, we report that the Amazon River plume supports N 2 fixation far from the mouth and provides important pathways for sequestration of atmospheric CO 2 in the western tropical North Atlantic (WTNA). We calculate that the sinking of carbon fixed by diazotrophs in the plume sequesters 1.7 Tmol of C annually, in addition to the sequestration of 0.6 Tmol of C yr ؊1 of the new production supported by NO 3 delivered by the river. These processes revise our current understanding that the tropical North Atlantic is a source of 2. diatom diazotroph associations ͉ nitrogen fixation ͉ new production ͉ river plumes ͉ Richelia D ownward vertical transport of organic carbon produced by phytoplankton, referred to as the biological pump, is a mechanism that transfers carbon from the surface to the deep ocean and regulates atmospheric CO 2 (1). The flux of nitrate (NO 3 ) from deep water to the photic zone can stimulate new phytoplankton production and export (2), but because the upwelling or diffusive flux of NO 3 is accompanied by a corresponding upward flux of CO 2 , its net contribution to removal of carbon from the atmosphere is much reduced. However, the sinking flux due to new production associated with nitrogenous inputs from rivers, atmospheric deposition, and N 2 fixation (diazotrophy), results in the net transport of atmospheric carbon to the deep ocean (3), or ''carbon sequestration'' (4).The Amazon River has the largest discharge of any river and accounts for 18% of all of the riverine input to the oceans. Between May and September, the Amazon plume covers up to 1.3 ϫ 10 6 km 2 with a freshwater lens of salinity Ͻ35 [supporting information (SI) Table S1], which accounts for 20% of the WTNA. Our understanding of the influence of the Amazon River on the carbon cycle in the WTNA has evolved significantly since Ryther et al. (5) first suggested that the Amazon River depressed the productivity of the region influenced by its plume. Several studies have focused on the nutrients delivered by the river to the inner shelf, the subsequent river-supported new production of 0. Fig. 1 and Table S2) complement earlier studies by examining the region of the plume starting 300 km north of the mouth of the river. We classified the stations into three categories based on sea surface salinity (SSS).¶ ¶ The ''low salinity'' group contained all of the stations with SSS Ͻ30. Stations that had SSS between 30 and 35 were classified as ''mesohaline,'' whereas those with SSS Ͼ35 were classified as ''oceanic.'' Surface NO 3 concentrations were below detection at most stations, with the highest value of 0.50 M recorded at the station with the lowest salinity of 24. DeMaster and Pope (7) found when plotting NO 3 vs...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.