The transcription factor Pax6, which belongs to the paired box-containing gene family, regulates developmental processes, especially in the eyes, central nervous tissues and craniofacial structures. However, the role of Pax6 in bone has never been studied exclusively. Here we report that Pax6 is expressed at both the mRNA and protein level in the calvaria and long bones of adult mice as well as osteocyte-like MLOY4 cells and suppresses the canonical Wnt signaling pathway. Moreover, the expression levels of Pax6 were much higher in the calvaria than the long bones, and Pax6 was also expressed at E16 to E18 in both the calvaria and long bones. Knockdown of Pax6 in MLOY4 cells did not affect cell proliferation or survival; however, the expression of Sost, an osteocyte marker gene, was significantly decreased. In addition, the overexpression of Pax6 suppressed the canonical Wnt signaling pathway by enhancing the expression of Sost. Furthermore, we also demonstrated that Pax6 binds to the Sost promoter and that stimulation of Sost transcription by Pax6 was dependent on a specific Pax6-binding sequence within the promoter. In conclusion, the results of the present study suggest that Pax6 is expressed in bone and may play an important role in osteocyte differentiation by controlling canonical Wnt signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.