In this study, the primary goal is to utilize the biological waste of water hyacinth (Eihhornia crassipes) plant fiber–reinforced polymer composite materials for commercial applications, especially for lightweight materials aspects. In this work, the physical, mechanical (tensile, flexural, and impact), thermal, and morphological properties of water hyacinth natural fiber composite samples are investigated. We strongly believe that only a minimum amount of work has to be done to this water hyacinth fiber composite oriented. Especially all the previous literature reported the hyacinth fibers are extracted from the retting process and manual method. But, in this work, hyacinth fibers are extracted from the new novel mechanical way of the extraction process. From the results of chemical analysis, water hyacinth fiber contains a very high 62.15% cellulose content and a minimum amount (14.82%) of hemicellulose content. The crystallinity index of water hyacinth fiber composite is 54.82%. The surface of the hyacinth composite is examined with the help of a scanning electron microscope. The thermal degradation of hyacinth fiber composite is measured with the help of the thermogravimetric analysis method. Based on the final experimental results, the water hyacinth natural fiber composite is the better alternative for other traditional fiber composites and it is strongly recommended for lightweight material applications.
The natural fibre extracted from water hyacinth waste could be used for making natural fibre polymer composites. The main intent of this manuscript is to develop polymer composite materials reinforced by aquatic wastewater hyacinth natural fibre having varying lengths. The water hyacinth fibres were extracted using a mechanical drum extractor followed by a drying process at a speed of 320 rpm. Mechanical testing of the composites was conducted as per the relevant ASTM standard and subsequently, thermo gravimetric analysis was also conducted to assess the thermal characteristics of the composites. Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) techniques were employed to characterize the elemental and microstructural properties of the composites. A 20 mm fibre length with a 30% fibre content resulted the best mechanical properties. Fractured surfaces from the composite samples are evaluated by using a scanning electron microscope (SEM). Brittle fracture, fibre pulled out, fibre clusters are identified as the general failure characteristics of the composites. This study demonstrated that the hyacinth fibre reinforced epoxy resin composite could be useful for developing particleboard products, as well as other lightweight products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.