Full control over the selectivity of carbon–carbon double-bond migrations would enable access to stereochemically defined olefins that are central to the pharmaceutical, food, fragrance, materials, and petrochemical arenas. The vast majority of double-bond migrations investigated over the past 60 years capitalize on precious-metal hydrides that are frequently associated with reversible equilibria, hydrogen scrambling, incompleteE/Zstereoselection, and/or high cost. Here, we report a fundamentally different, radical-based approach. We showcase a nonprecious, reductant-free, and atom-economical nickel (Ni)(I)-catalyzed intramolecular 1,3-hydrogen atom relocation to yieldE-olefins within 3 hours at room temperature. Remote installations ofE-olefins over extended distances are also demonstrated.
The Cu-catalyzed oxidation of ketones with O2 has recently been extensively utilized to cleave the α-C-C bond. This report examines the selective aerobic hydroxylation of tertiary α-C-H bonds in ketones without C-C cleavage. We set out to understand the underlying mechanisms of these two possible reactivity modes. Using experimental, in situ IR spectroscopic, and computational studies, we investigated several mechanisms. Our data suggest that both C-C cleavage and C-H hydroxylation pathways proceed via a common key intermediate, i.e., an α-peroxo ketone. The fate of this peroxide dictates the ultimate product selectivity. Specifically, we uncovered the role of hppH [=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine] to act not only as a base in the transformation but also as a reductant of the peroxide to the corresponding α-hydroxy ketone. This reduction may also be accomplished through exogenous phosphine additives, therefore allowing the tuning of reduction efficiency toward higher driving forces, if required (e.g., for more-activated substrates). The likely competitive pathway is the cleavage of peroxide to the α-oxy radical (likely catalyzed by Cu), which is computationally predicted to spontaneously trigger C-C bond cleavage. Increasing the susceptibility of this deperoxidation step via (i) the removal of reductant (use of different base, e.g., DBU) or the modulation of (ii) the substitution pattern toward greater activation (substrate control) and (iii) the nature of Cu catalyst (counterion and solvent dependence) will favor the C-C cleavage product.
A powerful intramolecular Schmidt reaction starting from primary azidoalcohols is reported. This approach involves a nonacidic activation of the alcohol via triflation. The synthetic potential offered by the mild reaction conditions is demonstrated by a highly selective synthesis of (-)-indolizidine 167B.
Potassium tert-butoxide acts as a nucleophilic oxygen source during the hydration of nitriles to give the corresponding amides under anhydrous conditions. The reaction proceeds smoothly for a broad range of substrates under mild conditions, providing an efficient and economically affordable synthetic route to the amides in excellent yields. This protocol does not need any transition-metal catalyst or any special experimental setup and is easily scalable to bulk scale synthesis. A single-electron-transfer radical mechanism as well as an ionic mechanism have been proposed for the hydration process.
A one-pot procedure for the efficient hydroazidation of alkenes involving hydroboration with catecholborane followed by reaction with benzenesulfonyl azide in the presence of a radical initiator is described. The regioselectivity is controlled by the hydroboration step and corresponds in most cases to an anti-Markovnikov regioselectivity. This procedure is applicable to a wide range of alkenes and gives excellent results with 1,2-disubstituted and trisubstituted alkenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.