Mononuclear cordinatively unsaturated iron(II) complexes having a triazacyclononane ligand were developed as highly efficient and environmentally friendly catalysts for the atom-transfer radical polymerization (ATRP). These iron catalysts showed high performance in the well-controlled ATRP of styrene, methacrylates, and acrylates. The high reactivity of these catalysts led to well-controlled polymerization and block copolymerization even with lower catalyst concentrations.Keywords: atom transfer radical polymerization; environmentally friendly catalyst; iron; ligand design; polymerization Transition metal-catalyzed atom-transfer radical polymerization (ATRP) is a representative example of controlled radical polymerization (CRP), which is an important methodology to construct well-defined polymers on both laboratory and industrial scales. [1,2] In ideal cases, good catalysts for ATRP realize: 1) access to polymers with the desired molecular weight and narrow molecular weight distribution, 2) high reaction rate and durability to achieve complete monomer conversion in the construction of block co-polymers, 3) versatile applicability to several monomers, and 4) minimum residual heavy metal catalysts in the product. While the first three points are general requirements for CRP, the fourth point is a special problem for transition metal-catalyzed reactions. It is known that residual metals make the properties of the formed polymers worse and can be potentially harmful. Facile removal of the catalyst from the polymer has thus been investigated using biphasic systems, solid-supported catalysts, and solubility control of catalysts. [3][4][5][6][7][8] Recent results by Matyjaszewski and coworkers showed that reduction of the catalyst concentration to be a solution for this problem as well. [9]
Monodehydroascorbate reductase (MDAR) is an enzyme involved in ascorbate recycling. Arabidopsis thaliana has five MDAR genes that encode two cytosolic, one cytosolic/peroxisomal, one peroxisomal membrane-attached, and one chloroplastic/mitochondrial isoform. In contrast, tomato plants possess only three enzymes, lacking the cytosol-specific enzymes. Thus, the number and distribution of MDAR isoforms differ according to plant species. Moreover, the physiological significance of MDARs remains poorly understood. In this study, we classify plant MDARs into three classes: class I, chloroplastic/mitochondrial enzymes; class II, peroxisomal membrane-attached enzymes; and class III, cytosolic/peroxisomal enzymes. The cytosol-specific isoforms form a subclass of class III and are conserved only in Brassicaceae plants. With some exceptions, all land plants and a charophyte algae, Klebsormidium flaccidum, contain all three classes. Using reverse genetic analysis of Arabidopsis thaliana mutants lacking one or more isoforms, we provide new insight into the roles of MDARs; for example, (1) the lack of two isoforms in a specific combination results in lethality, and (2) the role of MDARs in ascorbate redox regulation in leaves can be largely compensated by other systems. Based on these findings, we discuss the distribution and function of MDAR isoforms in land plants and their cooperation with other recycling systems.
Ascorbate is an indispensable redox buffer essential for plant growth and stress acclimation. Its oxidized form, dehydroascorbate (DHA), undergoes rapid degradation unless it is recycled back into ascorbate by glutathione (GSH)-dependent enzymatic or non-enzymatic reactions, with the enzymatic reactions catalyzed by dehydroascorbate reductases (DHARs). Our recent study utilizing an Arabidopsis quadruple mutant (Δdhar pad2), which lacks all three DHARs (Δdhar) and is deficient in GSH (pad2), has posited that these GSH-dependent reactions operate in a complementary manner, enabling a high accumulation of ascorbate under high-light stress. However, as Arabidopsis DHAR functions in the cytosol or chloroplasts, it remained unclear which isoform played a more significant role in cooperation with GSH-dependent non-enzymatic reactions. To further comprehend the intricate network of ascorbate recycling systems in plants, we generated mutant lines lacking cytosolic DHAR1/2 or chloroplastic DHAR3, or both, in another GSH-deficient background (cad2). A comprehensive comparison of ascorbate profiles in these mutants under conditions of photooxidative stress induced by various light intensities or methyl viologen unequivocally demonstrated that chloroplastic DHAR3, but not cytosolic isoforms, works in concert with GSH to accumulate ascorbate. Our findings further illustrate that imbalances between stress intensity and recycling capacity significantly impact ascorbate pool size and tolerance to photooxidative stress. Additionally, it was found that the absence of DHARs and GSH deficiency do not impede ascorbate biosynthesis, at least in terms of transcription or activity of biosynthetic enzymes. This study provides insights into the robustness of ascorbate recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.