A one-dimensional numerical model to study the evolution of longitudinal electrostatic wakefields, generated by propagation of a circularly polarized laser pulse in magnetized plasma has been presented. The direction of the external magnetic field is considered to be along as well as opposite to the axis of propagation of the laser pulse. Further, two-dimensional particle-in-cell code is used to obtain the generated wakefields. Separatrix curves are plotted to study the trapping and energy gain of an externally injected test electron, by the generated electrostatic wakefields, in the relativistic regime. Under appropriate conditions, an enhancement in the peak energy of an externally injected electron in magnetized plasma, as compared to the unmagnetized case, has been observed.
Analytical study of terahertz (THz) radiation generation due to wakefields produced by propagation of short laser pulses in magnetized, homogeneous plasma, in the mildly relativistic regime has been presented. The uniform magnetic field is applied along a direction perpendicular to the electric vector as well as the propagation direction of the laser field. A perturbative technique is used to obtain electric and magnetic wakefields generated within and behind the laser pulse. It is seen that the coupling of the slow velocities with the transverse magnetic field leads to on-axis THz radiation generation.
Evolution of longitudinal electrostatic wakefields, due to the propagation of a linearly polarized super-Gaussian laser pulse through homogeneous plasma has been presented via two-dimensional particle-in-cell simulations. The wakes generated are compared with those generated by a Gaussian laser pulse in the relativistic regime. Further, one-dimensional numerical model has been used to validate the generated wakefields via simulation studies. Separatrix curves are plotted to study the trapping and energy gain of an externally injected test electron, due to the generated electrostatic wakefields. An enhancement in the peak energy of an externally injected electron accelerated by wakes generated by super-Gaussian pulse as compared to Gaussian pulse case has been observed.
An analytical theory is developed for studying the phenomenon of generation of efficient odd and even high harmonics by the propagation of two-colour linearly polarized laser beams in a homogeneous underdense plasma. The wave equation governing the evolution of the amplitude of various harmonics driven by the current density at corresponding frequencies is set up. The ratio of the fundamental frequencies of the two laser beams is considered to be an arbitrary integer. A numerical evaluation of amplitudes of the third, fourth and fifth harmonics has been presented. It is seen that the third harmonic amplitude generated by the two-colour system is enhanced in comparison to that obtained by a single laser beam. The detuning distance for the former is also increased in comparison to the latter case.
This paper deals with a two-dimensional simulation study of terahertz radiation emission in the wake of circularly polarized laser pulses propagating in uniformly magnetized plasma, using the XOOPIC code. The external magnetic field is applied along the direction of propagation of the laser pulse. It is seen that linearly polarized terahertz radiation is emitted off-axis, along the propagation direction, in plasma. This emitted radiation is also seen to be transmitted in vacuum. Simulation studies reveal that no such radiation is generated on-axis for the given configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.