Narrowband and broadband indoor radar images significantly deteriorate in the presence of target-dependent and target-independent static and dynamic clutter arising from walls. A stacked and sparse denoising autoencoder (StackedSDAE) is proposed for mitigating the wall clutter in indoor radar images. The algorithm relies on the availability of clean images and the corresponding noisy images during training and requires no additional information regarding the wall characteristics. The algorithm is evaluated on simulated Doppler-time spectrograms and high-range resolution profiles generated for diverse radar frequencies and wall characteristics in around-the-corner radar (ACR) scenarios. Additional experiments are performed on range-enhanced frontal images generated from measurements gathered from a wideband radio frequency imaging sensor. The results from the experiments show that the StackedSDAE successfully reconstructs images that closely resemble those that would be obtained in free space conditions. Furthermore, the incorporation of sparsity and depth in the hidden layer representations within the autoencoder makes the algorithm more robust to low signal-to-noise ratio (SNR) and label mismatch between clean and corrupt data during training than the conventional single-layer DAE. For example, the denoised ACR signatures show a structural similarity above 0.75 to clean free space images at SNR of −10 dB and label mismatch error of 50%.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.