Resistance to drugs, which is aggravated by hypoxia, is a well-known feature of tumors. The combination of drug exposure and hypoxia can give rise to several survival strategies in the exposed cells. Glioblastoma multiforme (GBM) is among the most hypoxic of solid tumors, and we have used glial cells to identify a drug combination that would be synergistically effective in these cells under both normoxia and hypoxia. Cisplatin (CP) and 2-deoxy-D-glucose (2-DG), which have been used for second-line therapy and for preclinical research, are relatively ineffective as single agents. During in vitro experiments with A172 and LN229 cells, there was increased resistance to both drugs under hypoxia. However, the combination of CP and 2-DG showed a synergistic effect in reducing cell viability under both normoxia and hypoxia, with a combination index of less than 1. Increased autophagy is a distinct feature of the response to 2-DG. However, autophagic markers were reduced, and apoptotic markers were upregulated by the combination, indicating a switch over from autophagic to apoptotic pathways with reduction in endoplasmic reticulum (ER) stress. The combination also resulted in a decrease of pAKT levels. The effect of CP in the combination was replicated by the prototype AKT inhibitor LY294002, further supporting the role of AKT inhibition in the synergism. Combination of 2-DG with CP, or possibly an AKT inhibitor, can prove to be an effective rational combination for reducing chemoresistance under both normoxic and hypoxic conditions in gliomas.
Hypoxia is a characteristic of solid tumors especially Glioblastoma and is critical to chemoresistance. Cancer stem cells present in hypoxic niches are known to be a major cause of the progression, metastasis and relapse. We tried to identify synergistic combinations of drugs effective in both hypoxia and normoxia in tumor cells as well as in cancer stem cells. Since COX-2 is over-expressed in subset of glioblastoma and is also induced in hypoxia, we studied combinations of a prototype Cyclooxygenase (COX-2) inhibitor, NS-398 with various drugs (BCNU, Temozolomide, 2-Deoxy-D-glucose and Cisplatin) for their ability to abrogate chemoresistance under both severe hypoxia (0.2% O2) and normoxia (20% O2) in glioma cells. The only effective combination was of NS-398 and BCNU which showed a synergistic effect in both hypoxia and normoxia. This synergism was evident at sub-lethal doses for either of the single agent. The effectiveness of the combination resulted from increased pro- apoptotic and decreased anti-apoptotic molecules and increased caspase activity. PGE2 levels, a manifestation of COX-2 activity were increased during hypoxia, but were reduced by the combination during both hypoxia and normoxia. The combination reduced the levels of epithelial-mesenchymal transition (EMT) markers. It also resulted in a greater reduction of cell migration. While single drugs could reduce the number of gliomaspheres, the combination successfully abrogated their formation. The combination also resulted in a greater reduction of the cancer stem cell marker CD133. This combination could be a prototype of possible therapy in a tumor with a high degree of hypoxia like glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.