BackgroundSexual imprinting is important for kin recognition and for promoting outbreeding, and has been a driving force for evolution; however, little is known about sexual imprinting by auditory cues in mammals. Male mice emit song-like ultrasonic vocalizations that possess strain-specific characteristics.ObjectivesIn this study, we asked whether female mice imprint and prefer specific characteristics in male songs.Methods and FindingsWe used the two-choice test to determine the song preference of female C57BL/6 and BALB/c mice. By assessing the time engaged in searching behavior towards songs played back to females, we found that female mice displayed an innate preference for the songs of males from different strains. Moreover, this song preference was regulated by female reproductive status and by male sexual cues such as the pheromone ESP1. Finally, we revealed that this preference was reversed by cross-fostering and disappeared under fatherless conditions, indicating that the behavior was learned by exposure to the father's song.ConclusionsOur results suggest that female mice can discriminate among male song characteristics and prefer songs of mice from strains that are different from their parents, and that these preferences are based on their early social experiences. This is the first study in mammals to demonstrate that male songs contribute to kin recognition and mate choice by females, thus helping to avoid inbreeding and to facilitate offspring heterozygosity.
Most mammals have two major olfactory subsystems: the main olfactory system (MOS) and vomeronasal system (VNS). It is now widely accepted that the range of pheromones that control social behaviors are processed by both the VNS and the MOS. However, the functional contributions of each subsystem in social behavior remain unclear. To genetically dissociate the MOS and VNS functions, we established two conditional knockout mouse lines that led to either loss-of-function in the entire MOS or in the dorsal MOS. Mice with whole-MOS loss-of-function displayed severe defects in active sniffing and poor survival through the neonatal period. In contrast, when loss-of-function was confined to the dorsal MOB, sniffing behavior, pheromone recognition, and VNS activity were maintained. However, defects in a wide spectrum of social behaviors were observed: attraction to female urine and the accompanying ultrasonic vocalizations, chemoinvestigatory preference, aggression, maternal behaviors, and risk-assessment behaviors in response to an alarm pheromone. Functional dissociation of pheromone detection and pheromonal induction of behaviors showed the anterior olfactory nucleus (AON)-regulated social behaviors downstream from the MOS. Lesion analysis and neural activation mapping showed pheromonal activation in multiple amygdaloid and hypothalamic nuclei, important regions for the expression of social behavior, was dependent on MOS and AON functions. Identification of the MOS-AON-mediated pheromone pathway may provide insights into pheromone signaling in animals that do not possess a functional VNS, including humans.social behavior | pheromone processing | main olfactory system | vomeronasal system M ost mammals have two major olfactory subsystems-the main olfactory system (MOS) and vomeronasal system (VNS). The MOS comprises the main olfactory epithelium (MOE), in which olfactory sensory neurons detect odorants, and their projection target, the main olfactory bulb (MOB) (Fig. S1A). Although the MOS is thought to detect volatile odorants and the VNS is thought to be important for the detection of nonvolatile pheromones, evidence shows that the MOS is also involved in pheromone detection (1-8). Surgical blocking of odorant access to the MOE, but not surgical ablation of the vomeronasal epithelium (VNE), eliminates preference to odors from the opposite sex in ferrets (9, 10). In mice, chemical ablation of the MOE impairs male and female sexual behaviors (11,12). In these experiments in which the MOE was ablated, the function of the VNS is not directly disrupted, because the VNS is activated by direct application of urine to the nostril. Thus, these results indicate that the MOS also contributes to pheromone processing and related behaviors.Nonconditional disruption of genes encoding signal transduction proteins that are required for activation of olfactory neurons, such as cyclic nucleotide-gated channel (Cnga2) or adenylyl cyclase 3, impairs several social behaviors (11,(13)(14)(15). However, complete loss of MOS function causes a...
Male-female interaction is important for finding a suitable mating partner and for ensuring reproductive success. Male sexual signals such as pheromones transmit information and social and sexual status to females, and exert powerful effects on the mate preference and reproductive biology of females. Likewise, male vocalizations are attractive to females and enhance reproductive function in many animals. Interestingly, females' preference for male pheromones and vocalizations is associated with their genetic background, to avoid inbreeding. Moreover, based on acoustic cues, olfactory signals have significant effects on mate choice in mice, suggesting mate choice involves multisensory integration. In this review, we synopsize the effects of both olfactory and auditory cues on female behavior and neuroendocrine functions. We also discuss how these male signals are integrated and processed in the brain to regulate behavior and reproductive function.
Acoustic signals are widely used as courtship signals in the animal kingdom. It has long been known that male mice emit ultrasonic vocalizations (USVs) in the presence of female mice or in response to female secretions. This observation led to the hypothesis that male USVs play a role in courtship behavior. Although previous studies showed that female mice have a social partner preference for vocalizing males, it is not known if they exhibit a sexual partner preference when given a choice. To address this issue, we examined the copulatory behaviors of female mice with either devocalized males (with or without the playback of the USVs) or sham-operated males in 2 different behavioral paradigms: the no-choice paradigm in the home cage of a male mouse (without choice of mating partners) or the mate-choice paradigm in a 3-chambered apparatus (with choice of mating partners). In the no-choice paradigm, female mice exhibited comparable sexual receptivity with sham-operated and devocalized males. In addition, we found that female mice showed more approach behavior towards devocalized males when male USVs were played back. In the mate-choice paradigm, female mice visited more frequently and stayed longer with sham-operated than devocalized males. Furthermore, we showed that female mice received more intromissions from sham-operated males than devocalized males. In summary, our results suggested that, although female mice can copulate equally with both devocalized and vocalizing males when given no choice of mating partner, female mice exhibit both sexual and social partner preferences for vocalizing males in the mate-choice paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.