In order to examine the mixing properties of glycerol–water and diglycerol–water solutions, these solutions were measured using attenuated total reflection infrared spectroscopy. The absorbance spectra corrected for 1 µm thickness were subtracted by pure polyols for obtaining water spectra, and by pure water for polyol spectra. Both asymmetric and symmetric CH2 stretching vibration bands (around 2940, 2885 cm−1) shifted about 10 cm−1 to lower wavenumber side (redshifts) with increasing polyol concentrations, especially at higher concentrations. Redshifts of C–O–H rocking bands (around 1335 cm−1) with increasing polyol concentrations are slightly larger for diglycerol–water (10 > 6 cm−1) than glycerol–water solutions. C–O stretching bands of CHOH groups (1125 and 1112 cm−1) shift slightly but in opposite sides for glycerol and diglycerol at highest polyol concentrations (90–100 wt%). These shifts of CH2 stretching, COH rocking, and CO stretching of CHOH at higher polyol concentrations suggest interactions of outer CH2 with inner CHOH groups of surrounding polyols. The normalized band area changes with polyol concentrations could be fitted by quadratic polynomials possibly due to mixtures of different interactions between water–water, polyol–water, and polyol–polyol molecules. The OH stretching band for diglycerol 90 wt% shows three humps indicating at least three OH components: long, medium, and short H bond water molecules. Short H bond water molecules are the major component possibly between inner CHOH and outer side CH2OH groups, while the long H component might loosely bind to outer CH2OH groups.
ObjectivePolyols are moisturizers used in cosmetics. Using X‐ray diffraction, we studied the moisturizingmechanism of polyol solutions in the stratum corneum (SC). We examined whether glycerol disrupts the ordered hydrocarbon chain packing structure in isolated SC, as previously proposed in an SC lipid model.MethodsThe SC samples were prepared by treatment with water and aqueous solutions of glycerol, diglycerol and glycerol/diglycerol. To examine the differences in the water‐retention efficiency of polyols, using a solution cell, we performed dynamic X‐ray diffraction to analyse the structural changes that occurred during water removal from the hydrated samples by a stream of dry nitrogen gas. We focused on two structures, the orthorhombic hydrocarbon chain packing structure in the intercellular lipids and the soft keratin in the corneocytes where most of the water is stored.ResultsThe spacing formed by the soft keratin in the corneocytes immersed in a solution of water and diglycerol solution decreased rapidly by water removal. In contrast, it decreased gradually in the corneocytes immersed in a solution of glycerol and glycerol/diglycerol, indicating that the glycerol‐containing solutions maintained the hydrated state of the corneocytes for longer. Furthermore, the characteristic change of the spacing in the orthorhombic hydrocarbon chain packing structure over time was observed during the drying process. The hydrated state was maintained longer, in water, followed by glycerol, diglycerol and glycerol/diglycerol, in increasing order. This is the first study to report such characteristic properties that could be indicators of the capacity of the SC to regulate water.ConclusionThe dynamic X‐ray diffraction experiment on the structure of the soft keratin and the orthorhombic hydrocarbon chain packing structure during the drying of the hydrated SC provides an insight into the moisturizing mechanism of the polyol solutions in the SC. The results show that the glycerol/diglycerol solution functions as an effective SC moisturizer at the molecular level. Further, it was confirmed that the behaviour of glycerol in the isolated SC varies from that proposed in the SC lipid model, wherein glycerol was proposed to prevent the formation of a regular hydrocarbon chain packing structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.