The physiological functions and bioavailability of flavonoids have been widely investigated since their bioactivities were identified about 80 years ago. Quercetin is a typical flavonoid ubiquitously contained in vegetables and fruits with several biological effects demonstrated in vitro and in vivo including antioxidative, anti-inflammatory, anticancer, and antidiabetic activities. After the ingestion of vegetables and fruits, quercetin glycosides are metabolized, absorbed, and circulated as types of conjugates in the blood. Thereafter, quercetin-3-O-β-D-glucuronide (Q3GA), a major metabolite of quercetin, is distributed throughout the body where it may exert beneficial functions in target tissues. Hydrophilic Q3GA has been found to be deconjugated into hydrophobic quercetin aglycone at injured sites which, in turn, may improve the pathological conditions. This review presents updated information on the biological aspects and mechanisms of action of quercetin and its related polyphenols. In particular, new insights into their beneficial health effects on the brain, blood vessels, muscle, and intestine will be discussed.
Myeloperoxidase (MPO), secreted by activated neutrophils and macrophages at the site of inflammation, may be implicated in the oxidation of protein/lipoprotein during the development of cardiovascular diseases. Flavonoids have been suggested to act as antioxidative and anti-inflammatory agents in vivo; however, their molecular actions have not yet been fully understood. In this study, we examined the molecular basis of the inhibitory effects of dietary flavonoids, such as quercetin, and their metabolites on the catalytic reaction of MPO using a combination of biological assays and theoretical calculation studies. Immunohistochemical staining showed that a quercetin metabolite was colocalized with macrophages, MPO, and dityrosine, an MPO-derived oxidation product of tyrosine, in human atherosclerotic aorta. Quercetin and the plasma metabolites inhibited the formation of dityrosine catalyzed by the MPO enzyme and HL-60 cells in a dose-dependent manner. Spectrometric analysis indicated that quercetin might act as a cosubstrate of MPO resulting in the formation of the oxidized quercetin. Quantitative structure-activity relationship studies showed that the inhibitory actions of flavonoids strongly depended not only on radical scavenging activity but also on hydrophobicity (log P). The requirement of a set of hydroxyl groups at the 3, 5, and 4'-positions and C2-C3 double bond was suggested for the inhibitory effect. The binding of quercetin and the metabolites to a hydrophobic region at the entrance to the distal heme pocket of MPO was also proposed by a computer docking simulation. The current study provides the structure-activity relationships for flavonoids as the anti-inflammatory dietary constituents targeting the MPO-derived oxidative reactions in vivo.
Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA), a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS). Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor) and siRNA-knockdown of Atg7 (an essential gene for autophagy). The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results showed that mitochondrial dysfunction plays a crucial role in the deconjugation of quercetin glucuronides in macrophages. Collectively, this study contributes to clarifying the mechanism responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites.
Manuka honey, obtained from Leptospermum scoparium flowers in New Zealand, has strong antibacterial properties. In this study, plausible authentication of the manuka honey was inspected by measuring leptosperin, methyl syringate 4-O-β-D-gentiobiose, along with methyl syringate. Despite a gradual decrease in methyl syringate content over 30 days at 50 °C, even at moderate 37 °C, leptosperin remained stable. A considerable correlation between nonperoxide antibacterial activity and leptosperin content was observed in 20 certified manuka honey samples. Leptosperin and methyl syringate in manuka honey and related products were analyzed using HPLC connected with mass spectrometry. One noncertified brand displayed significant variations in the leptosperin and methyl syringate contents between two samples obtained from different regions. Therefore, certification is clearly required to protect consumers from disguised and/or low-quality honey. Because leptosperin is stable during storage and specific to manuka honey, its measurement may be applicable for manuka honey authentication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.