In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. The yeast Saccharomyces cerevisiae induces trehalose or glycerol synthesis but does not increase intracellular proline levels during various stresses. Using a proline-accumulating mutant, we previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. This mutant was recently shown to carry an allele of PRO1 which encodes the Asp154Asn mutant ␥-glutamyl kinase (GK), the first enzyme of the proline biosynthetic pathway. Here, enzymatic analysis of recombinant proteins revealed that the GK activity of S. cerevisiae is subject to feedback inhibition by proline. The Asp154Asn mutant was less sensitive to feedback inhibition than wild-type GK, leading to proline accumulation. To improve the enzymatic properties of GK, PCR random mutagenesis in PRO1 was employed. The mutagenized plasmid library was introduced into an S. cerevisiae non-proline-utilizing strain, and proline-overproducing mutants were selected on minimal medium containing the toxic proline analogue azetidine-2-carboxylic acid. We successfully isolated several mutant GKs that, due to extreme desensitization to inhibition, enhanced the ability to synthesize proline better than the Asp154Asn mutant. The amino acid changes were localized at the region between positions 142 and 154, probably on the molecular surface, suggesting that this region is involved in allosteric regulation. Furthermore, we found that yeast cells expressing Ile150Thr and Asn142Asp/Ile166Val mutant GKs were more tolerant to freezing stress than cells expressing the Asp154Asn mutant.
During the fermentation of sake, cells of Saccharomyces cerevisiae are exposed to high concentrations of ethanol, thereby damaging the cell membrane and functional proteins. L-Proline protects yeast cells from damage caused by freezing or oxidative stress. In this study, we evaluated the role of intracellular L-proline in cells of S. cerevisiae grown under ethanol stress. An L-proline-accumulating laboratory strain carries a mutant allele of PRO1, pro1 D154N , which encodes the Asp154Asn mutant ␥-glutamyl kinase. This mutation increases the activity of ␥-glutamyl kinase and ␥-glutamyl phosphate reductase, which catalyze the first two steps of L-proline synthesis and which together may form a complex in vivo. When cultured in liquid medium in the presence of 9% and 18% ethanol under static conditions, the cell viability of the L-proline-accumulating laboratory strain is greater than the cell viability of the parent strain. This result suggests that intracellular accumulation of L-proline may confer tolerance to ethanol stress. We constructed a novel sake yeast strain by disrupting the PUT1 gene, which is required for L-proline utilization, and replacing the wild-type PRO1 allele with the pro1 D154N allele. The resultant strain accumulated L-proline and was more tolerant to ethanol stress than was the control strain. We used the strain that could accumulate L-proline to brew sake containing five times more L-proline than what is found in sake brewed with the control strain, without affecting the fermentation profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.