Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris (IV) and shown to be major predisposing factors for atopic dermatitis (AD). However, these studies have been mainly carried out in European populations. In early 2007, we identified two Oriental-specific FLG mutations in four Japanese families with IV and reported that filaggrin mutations were also significant predisposing factors for AD in Japan. However, the frequency of FLG mutations observed in our Japanese AD cohort (5.6%), was much lower than that seen in Europeans (up to 48%). Here, we studied a further seven Japanese families with IV and identified two additional nonsense mutations in FLG, S2889X, and S3296X. We found that more than 20% of patients in our Japanese AD case series carry FLG mutations, and there is significant statistical association between the four mutations and AD (chi(2) P=8.4 x 10(-6); heterozygote odds ratio 7.57, 95% CI 2.84-23.03). These data emphasize that skin-barrier impairment due to reduced filaggrin expression plays an important role in the pathogenesis of AD and sheds further light on the genetic architecture of atopy in Japan.
Plectin is a cytoskeletal linker protein that has a dumbbell-like structure with a long central rod and N- and C-terminal globular domains. Mutations in the gene encoding plectin (PLEC1) cause two distinct autosomal recessive subtypes of epidermolysis bullosa (EB): EB simplex with muscular dystrophy (EBS-MD), and EB simplex with pyloric atresia (EBS-PA). Here, we demonstrate that normal human fibroblasts express two different plectin isoforms including full-length and rodless forms of plectin. We performed detailed analysis of plectin expression patterns in six EBS-MD and three EBS-PA patients. In EBS-PA, expression of all plectin domains was found to be markedly attenuated or completely lost; in EBS-MD, the expression of the N- and C-terminal domains of plectin remained detectable, although the expression of rod domains was absent or markedly reduced. Our data suggest that loss of the full-length plectin isoform with residual expression of the rodless plectin isoform leads to EBS-MD, and that complete loss or marked attenuation of full-length and rodless plectin expression underlies the more severe EBS-PA phenotype. These results also clearly account for the majority of EBS-MD PLEC1 mutation restriction within the large exon 31 that encodes the plectin rod domain, whereas EBS-PA PLEC1 mutations are generally outside exon 31.
In summary, to our knowledge this is the first report demonstrating that the intracellular receptor NOD1 is functional expressed in human keratinocytes, suggesting that NOD1 may be involved in cutaneous innate immunity. Further studies are needed to understand the contribution of intracellular innate immune receptors to cutaneous host defense.
Unaffected Affected Fig 2. Detection of a mutation in codon 448 (c.1792-1798dup-GTTCCAC) in exon 12, a repeat of the preceding 7 bp in one allele, resulting in unclear multiple chromatograms after the tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.