Background: ATG4B mediates the cleavage of pro-LC3 and removes lipid conjugates from LC3 during autophagy. Results: We determined that defects in phosphorylation of ATG4B reduced its hydrolyase activity and impaired autophagic flux. Conclusion: Phosphorylation of ATG4B plays an important role in modulating its hydrolyase activity. Significance: This is the first report showing a role for phosphorylation of an ATG4-family protease in control of autophagy.
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening, cutaneous adverse drug reactions that are accompanied by keratinocyte cell death. Dead keratinocytes from SJS/TEN lesions exhibited necrosis, by morphological criteria. Supernatant from peripheral blood mononuclear cells (PBMCs) that had been exposed to the causative drug from patients with SJS/TEN induced the death of SJS/TEN keratinocytes, whereas supernatant from PBMCs of patients with ordinary drug skin reactions (ODSRs) exposed to the same drug did not. Keratinocytes from ODSR patients or from healthy controls were unaffected by supernatant from SJS/TEN or ODSR PBMCs. Mass spectrometric analysis identified annexin A1 as a key mediator of keratinocyte death; depletion of annexin A1 by a specific antibody diminished supernatant cytotoxicity. The necroptosis-mediating complex of RIP1 and RIP3 was indispensable for SJS/TEN supernatant-induced keratinocyte death, and SJS/TEN keratinocytes expressed abundant formyl peptide receptor 1 (FPR1), the receptor for annexin A1, whereas control keratinocytes did not. Inhibition of necroptosis completely prevented SJS/TEN-like responses in a mouse model of SJS/TEN. Our results demonstrate that a necroptosis pathway, likely mediated by annexin 1 acting through the FPR1 receptor, contributes to SJS/TEN.
PCTAIRE1 is distant relative of the cyclin-dependent kinase family that has been implicated in spermatogenesis and neuronal development, but it has not been studied in cancer. Here we report that PCTAIRE1 is expressed in prostate, breast, and cervical cancer cells where its RNAi-mediated silencing causes growth inhibition with aberrant mitosis due to defects in centrosome dynamics. PCTAIRE1 was not similarly involved in proliferation of non-transformed cells including diploid human IMR-90 fibroblasts. Through yeast two-hybrid screening we identified tumor suppressor p27 as a PCTAIRE1 interactor. In vitro kinase assays showed PCTAIRE1 phosphorylates p27 at Ser10. PCTAIRE1 silencing modulated Ser10 phosphorylation on p27 and led to its accumulation in cancer cells but not in non-transformed cells. In a mouse xenograft model of PPC1 prostate cancer, conditional silencing of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Mechanistic studies in HeLa cells showed that PCTAIRE1 phosphorylates p27 during the S and M phases of the cell cycle. Notably, p27 silencing was sufficient to rescue cells from mitotic arrest caused by PCTAIRE1 silencing. Clinically, PCTAIRE1 was highly expressed in primary breast and prostate tumors compared to adjacent normal epithelial tissues. Together our findings reveal an unexpected role for PCTAIRE1 in regulating p27 stability, mitosis and tumor growth, suggesting PCTAIRE1 as a candidate cancer therapeutic target.
Harlequin ichthyosis (HI), which is the most severe genodermatosis, is caused by loss-of-function mutations in ABCA12, a member of the ATP-binding cassette transporter family. To investigate the pathomechanism of HI and the function of the ABCA12 protein, we generated ABCA12-deficient mice (Abca12(-/-)) by targeting Abca12. Abca12(-/-) mice closely reproduce the human HI phenotype, showing marked hyperkeratosis with eclabium and skin fissure. Lamellar granule abnormalities and defective ceramide distribution were remarkable in the epidermis. Skin permeability assay of Abca12(-/-) fetuses revealed severe skin barrier dysfunction after the initiation of keratinization. Surprisingly, the Abca12(-/-) mice also demonstrated lung alveolar collapse immediately after birth. Lamellar bodies in alveolar type II cells of the Abca12(-/-) mice lacked normal lamellar structures. The level of surfactant protein B, an essential component of alveolar surfactant, was reduced in the Abca12(-/-) mice. Fetal therapeutic trials with systemic administration of retinoid or dexamethasone, which are effective for HI and respiratory distress, respectively, to the pregnant mother mice neither improved the skin phenotype nor extended the survival period. Our HI model mice reproduce the human HI skin phenotype soon after the initiation of fetal skin keratinization and provide evidence that ABCA12 plays pivotal roles in lung and skin barrier functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.