Incorporating machine learning into automatic performance analysis and tuning tools is a promising path to tackle the increasing heterogeneity of current HPC applications. However, this introduces the need for generating balanced datasets of parallel applications’ executions and for dealing with natural imbalances for optimizing performance parameters. This work proposes a holistic approach that integrates a methodology for building balanced datasets of OpenMP code-region patterns and a way to use such datasets for tuning performance parameters. The methodology uses hardware performance counters to characterize the execution of a given region and correlation analysis to determine whether it covers an unique part of the pattern input space. Nevertheless, a balanced dataset of region patterns may become naturally imbalanced when used for training a model for tuning any specific performance parameter. For this reason, we have explored several methods for dealing with naturally imbalanced datasets for finding the appropriated way of using them for tuning purposes. Experimentation shows that the proposed methodology can be used to build balanced datasets and that such datasets, plus a combination of Random Forest and binary classification, can be used to train a model able to accurately tune the number of threads of OpenMP parallel regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.