The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa 2 Cu 3 Ox (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (H c2 ) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO 2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to H c2 , given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an "ideal" disorder-free cuprate.high-temperature superconductors | charge-density-wave order | high magnetic field X-ray scattering | vestigial nematic order | competing order C harge-density-wave (CDW) order has been found to exist universally in the hole-doped superconducting cuprates (1-18), and the common characteristics at zero magnetic field include bidirectionality, quasi-2D and short-ranged correlations (7-17). More specifically, the CDW diffraction patterns are found in both directions of Cu-O bonds in the CuO2 plane (Fig. 1A), and the CDW correlation lengths parallel and perpendicular to the planes (i.e., along the a-or b-axes and the c axis) are less than ∼ 20 and ∼ 1 lattice constants, respectively (7-16), corresponding to a correlation volume of order 10 2 unit cells (UCs). Thus, the properties of the quasi-2D CDW are likely strongly affected by disorder and only indirectly represent the true nature of the underlying CDW correlations. Indeed, X-ray scattering shows that the onset of the quasi-2D order is gradual without a sharp transition (7-17), consistent with the influence of quenched disorder on an incommensurate CDW (19-21). Furthermore, whereas Y-based and La-based cuprates exhibit a clear competition between CDW and superconductivity (7,8,(12)(13)(14)(15), such competition is not apparent in the families of Bi-based and Hg-based cuprate compounds (9-11)-a discrepancy that probably reflects different degrees of quenched disorder among cuprate families.Recently, a CDW with significantly longer correlation lengths was observed in superconducting YBCO (Fig. 1B) via X-ray scattering at high magnetic fields (13,14). This reveals the character (i.e., 3D) of the high-field charge ordering previously inferred by other measurements (3-6). At a magnetic field of ∼ 30 T, i...
For materials that harbour a continuous phase transition, the susceptibility of the material to various fields can be used to understand the nature of the fluctuating order and hence the nature of the ordered state. Here we use anisotropic biaxial strain to probe the nematic susceptibility of URu 2 Si 2 , a heavy fermion material for which the nature of the low temperature 'hidden order' state has defied comprehensive understanding for over 30 years. Our measurements reveal that the fluctuating order has a nematic component, confirming reports of twofold anisotropy in the broken symmetry state and strongly constraining theoretical models of the hidden-order phase.
Motivated by recent observations of charge order in the pseudogap regime of hole-doped cuprates, we show that criss-crossed stripe order can be stabilized by coherent, momentum-dependent interlayer tunneling, which is known to be present in several cuprate materials. We further describe how subtle variations in the couplings between layers can lead to a variety of stripe ordering arrangements, and discuss the implications of our results for recent experiments in underdoped cuprates.
Nematic order has manifested itself in a variety of materials in the cuprate family. We propose an effective field theory of a layered system with incommensurate, intertwined spin-and charge-density wave (SDW and CDW) orders, each of which consists of two components related by C4 rotations. Using a variational method (which is exact in a large N limit), we study the development of nematicity from partially melting those density waves by either increasing temperature or adding quenched disorder. As temperature decreases we first find a transition to a nematic phase, but depending on the range of parameters (e.g. doping concentration) the strongest fluctuations associated with this phase reflect either proximate SDW or CDW order. We also discuss the changes in parameters that can account for the differences in the SDW-CDW interplay between the (214) family and the other hole-doped cuprates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.