Acrylic acid (AAc) and 2-hydroxyethyl methacrylate (HEMA) mixtures were simultaneously grafted onto the surfaces of polydimethylsiloxane (PDMS) films using a two-step oxygen plasma treatment (TSPT). The first step of this method includes: oxygen plasma pretreatment of the PDMS films, immersion in HEMA/AAc mixtures, removal from the mixtures, and drying. The second step was carried out by plasma copolymerization of preadsorbed reactive monomers on the surfaces of dried pretreated films. The effects of pretreatment and polymerization time length, monomer concentration, and ratio on peroxide formation and graft amount were studied. The films were characterized by attenuated total reflection Furrier transformer infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), zeta potential, surface tension, and water contact angle measurements. The ATR-FTIR spectrum of the modified film after alkaline treatment showed the two new characteristic bands of PHEMA and PAAc. Both increase the polar part of surface tension (g p ) after grafting and the evaluation of surface charge at pH 1.8, 7, and 12 confirmed the presence of polar groups on the surface of grafted films with a mixture of HEMA/AAc. Morphological studies using both AFM and SEM evaluation illustrated various amounts of grafted copolymer on the surface of PDMS films.
Alginate is a biopolymer with favorable pH-sensitive properties for oral delivery of peptides and proteins. However, conventional alginate nanogels have limitations such as low encapsulation efficiency because of drug leaching during bead preparation and burst release in high pH values. These shortcomings originate from large pore size of the nanogels. In this work, we proposed an on-chip hydrodynamic flow focusing approach for synthesis of alginate nanogels with adjustable pore size to achieve fine-tunable release profile of the encapsulated bioactive agents. It is demonstrated that the microstructure of nanogels can be controlled through adjusting flow ratio and mixing time directed on microfluidic platforms consisting of cross-junction microchannels. In this study, the average pore size of alginate nanogels (i.e., average molecular weight between cross-links, Mc) was related to synthesis parameters. Mc was calculated from equations based on equilibrium swelling theory and proposed methods to modify the theory for pH-sensitive nanogels. In the equations we derived, size and compactness of nanogels are key factors, which can be adjusted by controlling the flow ratio. It was found that increase in flow ratio increases the size of nanogels and decreases their compactness. The size of on-chip generated nanogels for flow ratio of 0.02-0.2 was measured to be in the range of 68-138 nm. Moreover, a method based on the Mie theory was implemented to estimate the aggregation number (Nagg) of polymer chains inside the nanogels as an indicator of compactness. According to the size and compactness results along with equations of modified swelling theory, Mc obtained to be in the range of 0.5-0.8 kDa. The proposed method could be considered as a promising approach for efficient polypeptides encapsulation and their sustained release.
A composite was constructed by embedding fragmented electrospun PLA nanofibers into an alginate-graft-hyaluronate hydrogel to generate an ECM-mimicking environment for cartilage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.