A three-component, Strecker reaction of a series of aldehydes or ketones, amines, and trimethylsilyl cyanide for the synthesis of α-aminonitriles in the presence of a catalytic amount of a magnetic solid sulfonic acid catalyst, Fe3O4@SiO2@Me&Et-PhSO3H under solvent-free conditions have been investigated. This catalyst, with a combination of hydrophobicity and acidity on the Fe3O4@SiO2 core-shell of the magnetic nanobeads, as well as its water-resistant property, enabled easy mass transfer and catalytic activity in the Strecker reaction. The catalyst was easily separated by an external magnet and the recovered catalyst was reused in 6 successive reaction cycles without any significant loss of activity.
The catalytic activities and selectivities of two kinds of mesoporous solid acids SBA‐15‐PrSO3H 1, SBA‐15‐Ph‐PrSO3H 2, and a periodic mesoporous organosilica (PMO) based solid acid Et‐PMO‐Me‐PrSO3H 3 that comprise different physicochemical surface properties were compared in an environmentally benign one‐pot, three‐component Biginelli reaction of aldehydes, β‐ketoesters and urea or thiourea under solvent‐free conditions. Among these mesoporous solid acid catalysts, 3, which has a hydrophobic/hydrophobic balance in the nanospaces (mesochannels) in which the active sites are located, is found to be a significantly more selective catalytic system in the Biginelli reaction; it produces the corresponding 3,4‐dihydropyrimidin‐2‐one\thione (DHPM) 5 derivatives in good to excellent yields and excellent selectivities. Notably, in the case of conducting the three‐component coupling reaction of benzaldehyde, metylacetoacetate and urea in the presence of 1 result in the generation of a mixture of Hantzsch dihydropyridine 4 (≈37 %) and Biginelli dihydropyrimidinone 5 (≈49 %), whereas the same reaction with 2 (catalyst loading of 1 mol % as well) furnishes the corresponding aldolic product methyl‐2‐benzylidene‐3‐oxobutanoate 6 as the major product (≈80 %) with concomitant formation of small amounts of 5 (<10 %) under essentially the same reaction conditions that are employed with catalyst 3. Water adsorption–desorption analysis of the catalysts is employed to possibly relate the observed selectivity to the difference in physicochemical properties of the materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.