We introduce a new family of iterative methods for solving mathematical models whose governing equations are nonlinear in nature. The new family gives several iterative schemes as special cases. We also give the convergence analysis of our proposed methods. In order to demonstrate the improved performance of newly developed methods, we consider some nonlinear equations along with two complex mathematical models. The graphical analysis for these models is also presented.
Newton's iteration method is widely used in numerical methods, but its convergence is low. Though a higher order iteration algorithm leads to a fast convergence, it is always complex. An optimal iteration formulation is much needed for both fast convergence and simple calculation. Here, we develop a two-step optimal fourth-order iterative method based on linear combination of two iterative schemes for nonlinear equations, and we explore the convergence criteria of the proposed method and also demonstrate its validity and efficiency by considering some test problems. We present both numerical as well as graphical comparisons. Further, the dynamical behavior of the proposed method is revealed.
Various iterative methods have been introduced by involving Taylor’s series on the auxiliary function g x to solve the nonlinear equation f x = 0 . In this paper, we introduce the expansion of g x with the inclusion of weights w i such that ∑ i = 1 p w i = 1 and knots τ i ∈ 0,1 in order to develop a new family of iterative methods. The methods proposed in the present paper are applicable for different choices of auxiliary function g x , and some already known methods can be viewed as the special cases of these methods. We consider the diverse scientific/engineering models to demonstrate the efficiency of the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.