The absorption of light by plasmonic nanostructures and their associated temperature increase are exquisitely sensitive to the shape and composition of the structure and to the wavelength of light. Therefore, much effort is put into synthesizing novel nanostructures for optimized interaction with the incident light. The successful synthesis and characterization of high quality and biocompatible plasmonic colloidal nanoparticles has fostered numerous and expanding applications, especially in biomedical contexts, where such particles are highly promising for general drug delivery and for tomorrow’s cancer treatment. We review the thermoplasmonic properties of the most commonly used plasmonic nanoparticles, including solid or composite metallic nanoparticles of various dimensions and geometries. Common methods for synthesizing plasmonic particles are presented with the overall goal of providing the reader with a guide for designing or choosing nanostructures with optimal thermoplasmonic properties for a given application. Finally, the biocompatibility and biological tolerance of structures are critically discussed along with novel applications of plasmonic nanoparticles in the life sciences.
Absorption of near infrared (NIR) light by metallic nanoparticles can cause extreme heating and is of interest for instance in cancer treatment since NIR light has a relatively large penetration depth into biological tissue. Here, we quantify the extraordinary thermoplasmonic properties of platinum nanoparticles and demonstrate their efficiency in photothermal cancer therapy. Although platinum nanoparticles are extensively used for catalysis, they are much overlooked in a biological context. Via direct measurements based on a biological matrix we show that individual irradiated platinum nanoparticles with diameters of 50-70 nm can easily reach surface temperatures up to 900 K. In contrast to gold nanoshells, which are often used for photothermal purposes, we demonstrate that the platinum particles remain stable at these extreme temperatures. The experiments are paralleled by finite element modeling confirming the experimental results and establishing a theoretical understanding of the particles' thermoplasmonic properties. At extreme temperatures it is likely that a vapor layer will form around the plasmonic particle, and we show this scenario to be consistent with direct measurements and simulations. Viability studies demonstrate that platinum nanoparticles themselves are non-toxic at therapeutically relevant concentrations, however, upon laser irradiation we show that they efficiently kill human cancer cells. Therefore, platinum nanoparticles are highly promising candidates for thermoplasmonic applications in the life sciences, in nano-medicine, and for bio-medical engineering.
Herein, a novel drug photorelease system based on gold nanostars (AuNSts), coated with a mesoporous silica shell and capped with paraffin as thermosensitive molecular gate, is reported. Direct measurements of the surface temperature of a single gold nanostar irradiated using a tightly focused laser beam are performed via a heat-sensitive biological matrix. The surface temperature of a AuNSt increases by hundreds of degrees (°C) even at low laser powers. AuNSts coated with a mesoporous silica shell using a surfactant-templated synthesis are used as chemotherapeutic nanocarriers. Synthetic parameters are optimized to avoid AuNSt reshaping, and thus to obtain nanoparticles with suitable and stable plasmonic properties for near-infrared (NIR) laser-triggered cargo delivery. The mesoporous silica-coated nanostars are loaded with doxorubicin (Dox) and coated with octadecyltrimethoxysilane and the paraffin heneicosane. The paraffin molecules formed a hydrophobic layer that blocks the pores, impeding the release of the cargo. This hybrid nanosystem exhibits a well-defined photodelivery profile using NIR radiation, even at low power density, whereas the nonirradiated sample shows a negligible payload release. Dox-loaded nanoparticles displayed no cytotoxicity toward HeLa cells, until they are irradiated with 808 nm laser, provoking paraffin melting and drug release. Hence, these novel, functional, and biocompatible nanoparticles display adequate plasmonic properties for NIR-triggered drug photorelease applications.
We demonstrate two different types of coupled beam propagation dynamics in colloidal gold nanosuspensions. In the first case, an infrared (IR) probe beam (1064 nm) is guided by a low-power visible beam (532 nm) in a gold nanosphere or in nanorod suspensions due to the formation of a plasmonic resonant soliton. Although the IR beam does not experience nonlinear self-action effects, even at high power levels, needle-like deep penetration of both beams through otherwise highly dissipative suspensions is realized. In the second case, a master/slave-type nonlinear coupling is observed in gold nanoshell suspensions, in which the nanoparticles have opposite polarizabilities at the visible and IR wavelengths. In this latter regime, both beams experience a self-focusing nonlinearity that can be fine-tuned.
A tightly focused, linearly polarized laser beam, so-called optical tweezers, is proven to be a useful micromanipulation tool. It is known that there is a stiffness asymmetry in the direction perpendicular to the optical axis inherited from the polarization state of the laser. In this Letter, we report our experimental results of stiffness asymmetry for different bead sizes measured at the optimal trapping condition. We also provide the results of our generalized Lorenz-Mie based calculations, which are in good agreement with our experimental results. We also compare our results with previous reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.