This study aimed at morphologically identifying Aspergillus flavus in soil and maize and at determining their aflatoxin-producing potentials. Five hundred and fourteen isolates obtained from maize and soil in Kenya were cultivated on Czapeck Dox Agar, Malt Extract Agar, Sabouraud Dextrose Agar, Potato Dextrose Agar, and Rose-Bengal Chloramphenicol Agar. Isolates were identified using macro-morphological characteristics. Micromorphological characteristics were determined using slide cultures. Aflatoxin production was determined by direct visual determination of the UV fluorescence of colonies on Coconut Agar Medium, Yeast Extract Sucrose agar, and Yeast Extract Cyclodextrin Sodium Deoxycholate agar and by Thin Layer Chromatography. Forty-three presumptive A. flavus isolates were identified; aflatoxin was detected in 23% of the isolates by UV fluorescence screening and in 30% by Thin-Layer Chromatography (TLC). The aflatoxins produced were: aflatoxin B 1 (AFB 1), aflatoxin B 2 (AFB 2), and aflatoxin G 1 (AFG 1); some isolates produced only AFB 1 , whereas others produced either AFB 1 and AFB 2 or AFB 1 and AFG 1. The highest incidence of A. flavus (63%) and aflatoxin production (28%) was recorded in samples from Makueni District. Isolates from Uasin Gishu (21%) and Nyeri (5%) were non-aflatoxigenic. Bungoma District recorded 11% positive isolates of which 2% were aflatoxin producers. The occurrence of aflatoxin-producing A. flavus emphasises the need for measures to eliminate their presence in food crops.
Antibiotic-resistant Campylobacter could adversely affect treatment outcomes, especially in children. We investigated the antibiotic susceptibility profiles, virulence potentials and genetic relatedness of Campylobacter spp. from paediatric and water samples in the North West Province, South Africa. Overall, 237 human and 20 water isolates were identified using culture and real-time polymerase chain reaction (PCR). The antibiotic susceptibility profiles were determined using the disk diffusion method. Gradient strips were used to determine the minimum inhibitory concentration of each antibiotic. Antibiotic resistance (gryA, tetO and 23S rRNA 2075G and 2074C) and virulence (cadF and ciaB) genes were also investigated using PCR. A phylogenetic tree to ascertain the clonality between water and clinical isolates was constructed using MEGA 7. Overall, 95% (water) and 64.7% (human) of the isolates were resistant to at least one antibiotic tested. The highest resistance was against clarithromycin (95%) for water and ampicillin (60.7%) for human isolates. The 23S rRNA 2075G/2074C mutation was the most expressed resistance gene. Phylogenetic reconstruction revealed eight intermixed clades within water and human Campylobacter isolates. This study suggests the possible circulation of potentially pathogenic antibiotic-resistant Campylobacter in the Northwest Province, South Africa with drinking water being a possible vector for disease transmission in this area.
Coagulase-negative staphylococci (CoNS) have engendered substantial interest in recent years as pathogenic causes of infections in both human and veterinary medicine, especially in the immunocompromised, critically ill, long-term hospitalized and in those harboring invasive medical devices such as catheters. They have been implicated in infections such as urinary tract infections, bloodstream infections, and invasive device-related infections, and are responsible for substantial economic losses in livestock production. The advancement of diagnostic techniques has increased our understanding of their molecular mechanisms of pathogenicity, even though distinguishing between innocuousness and pathogenicity is still challenging. The incidence of CoNS varied across the continent in humans and animals (mainly cattle), ranging from 6% to 68% in suspected human infections and from 3% to 61.7% in suspected animal infections, distributed across different geographic locations. Furthermore, there were varying antibiotic resistance patterns observed in CoNS isolates, with high methicillin resistance in some cases, leading to crossresistance against many antibiotics. Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus xylosus were most commonly reported in studies herein reviewed, while the enterotoxin C gene, atl E gene, ica gene, and hemolysin virulence factors were linked with enhanced pathogenicity. Advancement in identification and typing methods, including whole genome sequencing, virulence screening, and the assessment of the immune status of subjects in studies will help to thoroughly assess the true pathogenic potential of isolated CoNS species in developing countries. Careful antibiotic stewardship guidelines should be followed due to the ability of CoNS to develop multidrug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.