Developing new techniques of simultaneous recoding using thousand electrodes, make the wide variety of spike waveforms across multiple channels. This problem causes spike loss and raise the crucial issue of spike sorting with unstable clusters. While there exist many automatic spike sorting methods, there has been a lack of studies developing robust and adaptive spike detection algorithm. Here, an adaptive procedure is introduced to improve the detection of spikes in different scenarios. This procedure includes a new algorithm which aligns the spike waveforms at the point of extremums. The other part is statistical filtering, which seeks to remove noises that mistakenly detected as true spike. To deal with non-symmetrical clusters, we proposed a new clustering algorithm based on the mixture of skew-t distributions. The proposed method could overcome the spike loss and skewed cells challenges by offering an improvement over automatic detection, alignment, and clustering of spikes. Investigating the sorted spikes, reveals that proposed adaptive algorithm improves the performance of the spike detection in both terms of precision and recall. The adaptive algorithm has been validated on different datasets and demonstrates a general solution to precise spike sorting, in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.