Implantation of acellular biomimetic scaffolds with proangiogenic motifs may have exciting clinical utility for the treatment of ischemic pathologies such as myocardial infarction. Although direct delivery of angiogenic proteins is a possible treatment option, smaller synthetic peptide-based nanostructured alternatives are being investigated due to favorable factors, such as sustained efficacy and high-density epitope presentation of functional moieties. These peptides may be implanted in vivo at the site of ischemia, bypassing the first-pass metabolism and enabling long-term retention and sustained efficacy. Mimics of angiogenic proteins show tremendous potential for clinical use. We discuss possible approaches to integrate the functionality of such angiogenic peptide mimics into self-assembled peptide scaffolds for application in functional tissue regeneration.
IntroductionNeuromodulation is an evolving and increasingly popular therapy for chronic pain management. Recent data suggest that novel waveforms have demonstrated greater benefit over traditional spinal cord stimulation (SCS). The authors conducted a retrospective review of patients undergoing high-frequency 10 kHz SCS at a single tertiary medical center for the purpose of contributing further evidence to this growing body of data. The literature of high-frequency SCS published to date was also reviewed.
MethodsA retrospective chart review was performed for patients with chronic pain syndrome, including failed back surgery syndrome and sciatica alone, who underwent high-frequency SCS at 10 kHz. This data was analyzed using R software (R Foundation for Statistical Computing, Vienna, Austria) for statistical analysis. The PubMed database was searched for relevant articles using the search terms "high frequency," "10 kHz," and "spinal cord stimulation." All relevant studies conducted to date were included in this literature review.
ResultsTwenty-one patients had complete follow-up data and were included in this study. Of the 21 patients, 85.7% subjectively reported post-operative pain relief while 71.4% of the total patients reported pain relief by ≥ 50%. There was a statistically significant decrease in mean VAS scores from pre-operative to 12-months post-operative (8.52 vs 4.37, p < 0.001). Additionally, 76.5% of patients subjectively reported improvements in sleep and activities of daily living. Recent studies indicate that high-frequency SCS appears to be a viable option for delivering quality pain relief in patients for chronic regional pain syndrome, failed back surgery syndrome, sciatica, and also pain in the upper cervical region of the spine.
ConclusionThis article provides evidence both with the authors' own institutional data and from the currently published literature for the efficacy of using high-frequency SCS at 10 kHz as a first-line programming option for patients undergoing SCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.