A model of hysteresis has been developed earlier in which the susceptibility depends on the displacement of the prevailing magnetization from the anhysteretic. This model does not take into account the effect of magnetocrystalline anisotropy in a material. In the current work, it has been shown that the effect of anisotropy can be incorporated into this model through its effect on the anhysteretic magnetization.
An extension to the model of hysteresis has been presented earlier which included the effect of anisotropy in the modeling of the anhysteretic magnetization curves of uniaxially anisotropic single crystalline materials. Further exploration of this extension shown here considers different kinds of crystal anisotropy in materials. Theory considers that the differential susceptibility at any given field is determined by the displacement of the prevailing magnetization from the anhysteretic magnetization. Thus, it has been shown that the effect of anisotropy on magnetic hysteresis in materials can be incorporated into the model of hysteresis through the anisotropic anhysteretic. This extension is likely to be particularly useful in the case of hard magnetic materials which exhibit high anisotropy. KeywordsMagnetic anisotropy, Magnetic hysteresis, Magnetic materials, Magnetic susceptibilities Disciplines Electromagnetics and Photonics | Engineering Physics | Materials Science and Engineering CommentsThe following article appeared in Journal of Applied Physics 81 (1997) Generalization of hysteresis modeling to anisotropic materials A. Ramesh, D. C. Jiles, and Y. Bi Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 An extension to the model of hysteresis has been presented earlier which included the effect of anisotropy in the modeling of the anhysteretic magnetization curves of uniaxially anisotropic single crystalline materials. Further exploration of this extension shown here considers different kinds of crystal anisotropy in materials. Theory considers that the differential susceptibility at any given field is determined by the displacement of the prevailing magnetization from the anhysteretic magnetization. Thus, it has been shown that the effect of anisotropy on magnetic hysteresis in materials can be incorporated into the model of hysteresis through the anisotropic anhysteretic. This extension is likely to be particularly useful in the case of hard magnetic materials which exhibit high anisotropy.
The present study investigates the piezoresistive properties of polycrystalline MoS2 film for strain-sensing applications. The gauge factor (GF) of the flexible MoS2 device (MoS2/PET) has been calculated to be 102 ± 5 in the stress range from ~7 MPa to ~14 MPa. In addition, to improve the sensing stress range, the flexible strain sensors are encapsulated by SU-8. The effect of encapsulation layer thickness is reflected in the GF, which is attributed to the shifting of the neutral axis. However, the calculated GF is constant in the higher stress range, 80 ± 2 and 12 ± 1 for 2 μm and 10 μm thick SU-8, respectively. Herein, we report a cost-effective and scalable approach to fabricate large-area polycrystalline MoS2-based flexible sensors for a wider stress range. The encapsulated devices remained undistorted and intact for stress values beyond 14 MPa. Further, we demonstrate the durability of the fabricated sensors with body movements, such as hand gestures, for all the three types of strain sensor.
The existing isotropic model equations of hysteresis in magnetic materials have been extended to include the effects of anisotropy and texture. This has proved particularly important as the model is been used to describe an increasing range of magnetic materials in which anisotropy plays a significant role, for example hard magnetic materials. It has been found that anisotropy and texture in polycrystalline magnetic materials can be adequately described by modifying the equation for the anhysteretic curve to account for these effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.