Obtaining a good socket fit is an iterative process dependent on the skill and experience of the prosthetist creating it, and requiring individualisation based on the size and shape. There is no standard measurement system used to aid prosthetic socket creation, despite the severe impacts on physical health and quality of life if one is ill-fitting. Pressure sensors embedded in a prosthetic socket were used to collect data at the socket-residuum interface. To choose an interpolation method, a 2D grid was used, with previously collected walking test pressure data, to simplify the sensor array with a border for extrapolation. Four multivariable interpolation methods were evaluated to create a colour map of the pressure data. Radial Basis Function interpolation was chosen as it produced a clear image with a graduated interpolation between data points and was used to create a colour map across the surface of a 3D prosthetic socket model. For the model to be accessible to clinical audiences, a desktop application was created using PyQt to view the model. The created application allowed for connection to the sensors via Bluetooth, with the pressure data updating the colour map on the 3D model in real-time. The created application shows the potential for a clinical product, however further development informed by feedback from rehabilitation clinicians and prosthesis users is required
Obtaining a good socket fit is an iterative process dependent on the skill and experience of the prosthetist creating it and requires individualisation based on the size and shape. There is no standard measurement system used to aid prosthetic socket creation despite the severe impacts on physical health and quality of life if one is ill fitting. Pressure sensors embedded in a prosthetic socket were used to collect data at the socket–residuum interface. To choose an interpolation method, the sensor array was simplified to a 2D grid with a border for extrapolation and tested using previously collected walking test pressure data. Four multivariable interpolation methods were evaluated to create a colour map of the pressure data. Radial basis function interpolation was chosen, as it produced a clear image with a graduated interpolation between data points, and was used to create a colour map across the surface of a 3D prosthetic socket model. For the model to be accessible to clinical audiences, a desktop application was created using PyQt to view the model. The application allowed for connection to the sensors via Bluetooth, with the pressure data updating on the 3D model in real time. Clinician feedback on the application showed the potential for a clinical product; however, further development informed by feedback from rehabilitation clinicians and prosthesis users is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.