Fatty acid-binding proteins (FABPs) bind unsaturated fatty acids and lipid peroxidation products during tissue injury from hypoxia. We evaluated the potential role of L-type FABP (L-FABP) as a biomarker of renal ischemia in both human kidney transplant patients and animal models. Urinary L-FABP levels were measured in the first urine produced from 12 living-related kidney transplant patients immediately after reperfusion of their transplanted organs, and intravital video analysis of peritubular capillary blood flow was performed simultaneously. A significant direct correlation was found between urinary L-FABP level and both peritubular capillary blood flow and the ischemic time of the transplanted kidney (both P Ͻ 0.0001), as well as hospital stay (P Ͻ 0.05). In human-L-FABP transgenic mice subjected to ischemiareperfusion injury, immunohistological analyses demonstrated the transition of L-FABP from the cytoplasm of proximal tubular cells to the tubular lumen. In addition, after injury, these transgenic mice demonstrated lower blood urea nitrogen levels and less histological injury than injured wild-type mice, likely due to a reduction of tissue hypoxia. In vitro experiments using a stable cell line of mouse proximal tubule cells transfected with h-L-FABP cDNA showed reduction of oxidative stress during hypoxia compared to untransfected cells. Taken together, these data show that increased urinary L-FABP after ischemic-reperfusion injury may find future use as a biomarker of acute ischemic injury.
It is the FFAs bound to albumin, rather than albumin itself, which cause severe tubulointerstitial damage by being reabsorbed into the proximal tubule. To our knowledge, this is the first in vivo observation in which FFAs have caused severe tubulointerstitial injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.