Ku, a heterodimer of Ku70 and Ku80, plays a key role in multiple nuclear processes, e.g. DNA repair, chromosome maintenance, and transcription regulation. Heterodimerization is essential for Ku-dependent DNA repair in vivo, although its role is poorly understood. Some lines of evidence suggest that heterodimerization is required for the stabilization of Ku70 and Ku80. Here we show that the heterodimerization of these Ku subunits is important for their nuclear entry. When transfected into Ku-deficient xrs-6 cells, exogenous Ku70 and Ku80 tagged with green fluorescent protein accumulated into the nucleus, whereas each nuclear localization signal (NLS)-dysfunctional mutant was undetectable in the nucleus, supporting the idea that each Ku can translocate to the nucleus through its own NLS. On the other hand, the nuclear accumulation of each NLS-dysfunctional mutant was markedly enhanced by the presence of an exogenous wild-type counterpart. In Ku-expressing HeLa cells, each NLS-dysfunctional mutant, as well as wild-type Ku70 and Ku80, was still detectable in the nucleus, whereas the double mutant of each Ku subunit with decreased functions of both nuclear targeting and dimerization was undetectable in the nucleus. Our results indicate that each Ku subunit can translocate to the nucleus not only through its own NLS but also through heterodimerization with each other.
The skin is an external organ that is most frequently exposed to radiation. High-dose radiation initiates and promotes skin cancer and acute radiation injury. It is important to investigate the influence of high-dose radiation exposure on the skin at the molecular level to understand acute radiation injury. To identify genes that are associated with injury caused by high-dose radiation exposure of the skin, we used microarray technology to examine the effect of irradiation on approximately 1000 genes in normal human epidermal keratinocytes at 3 h postirradiation with a cytotoxic dose of X-ray (5 Gy). We found that 16 and 59 genes were up- and down-regulated respectively in the keratinocytes. Several apoptosis-related genes, for example, BAK and TSC-22, and anti-proliferative genes, for example, BTG-1 and BTG-3, were up-regulated. We focused on ATF3 because ATF3 is induced most strongly by X-irradiation, and its function in keratinocytes is unknown. The induction of the ATF3 mRNA and protein in keratinocytes following X-ray was confirmed by RT-PCR and western blot analysis. ATF3 was also induced and accumulated within the nuclei of keratinocytes after X-ray irradiation in vivo and in vitro. Exogenous EYFP-ATF3 also accumulated within the nuclei of keratinocytes. In the transient expression assay, EYFP-ATF3, but not EYFP, induced apoptosis in keratinocytes. Taken together, these results suggest that ATF3 plays a role in apoptosis in keratinocytes and is associated with skin injury caused by ionizing radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.