The purpose of this paper is to give an overview of
the recent surgical intraoperational applications of indocyanine
green fluorescence imaging methods, the basics of the technology,
and instrumentation used. Well over 200 papers describing this
technique in clinical setting are reviewed. In addition to the surgical
applications, other recent medical applications of ICG are briefly
examined.
Saccular intracranial aneurysms (sIA) are pouch-like pathological dilatations of intracranial arteries that develop when the cerebral artery wall becomes too weak to resist hemodynamic pressure and distends. Some sIAs remain stable over time, but in others mural cells die, the matrix degenerates, and eventually the wall ruptures, causing life-threatening hemorrhage. The wall of unruptured sIAs is characterized by myointimal hyperplasia and organizing thrombus, whereas that of ruptured sIAs is characterized by a decellularized, degenerated matrix and a poorly organized luminal thrombus. Cell-mediated and humoral inflammatory reaction is seen in both, but inflammation is clearly associated with degenerated and ruptured walls. Inflammation, however, seems to be a reaction to the ongoing degenerative processes, rather than the cause. Current data suggest that the loss of mural cells and wall degeneration are related to impaired endothelial function and high oxidative stress, caused in part by luminal thrombosis. The aberrant flow conditions caused by sIA geometry are the likely cause of the endothelial dysfunction, which results in accumulation of cytotoxic and pro-inflammatory substances into the sIA wall, as well as thrombus formation. This may start the processes that eventually can lead to the decellularized and degenerated sIA wall that is prone to rupture.
Stroke is the world’s third leading cause of death. One cause of stroke, intracranial aneurysm, affects ~2% of the population and accounts for 500,000 hemorrhagic strokes annually in midlife (median age 50), most often resulting in death or severe neurological impairment1. The pathogenesis of intracranial aneurysm is unknown, and because catastrophic hemorrhage is commonly the first sign of disease, early identification is essential. We carried out a multistage genome-wide association study (GWAS) of Finnish, Dutch and Japanese cohorts including over 2,100 intracranial aneurysm cases and 8,000 controls. Genome-wide genotyping of the European cohorts and replication studies in the Japanese cohort identified common SNPs on chromosomes 2q, 8q and 9p that show significant association with intracranial aneurysm with odds ratios 1.24-1.36. The loci on 2q and 8q are new, whereas the 9p locus was previously found to be associated with arterial diseases, including intracranial aneurysm2-5. Associated SNPs on 8q likely act via SOX17, which is required for formation and maintenance of endothelial cells6-8, suggesting a role in development and repair of the vasculature; CDKN2A at 9p may have a similar role9. These findings have implications for the pathophysiology, diagnosis and therapy of intracranial aneurysm.
At present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.