Highly trained athletes are repeatedly and strongly exposed to cold air during winter training and to many inhalant irritants and allergens all year round. Asthma occurs most commonly in athletes engaging in endurance events such as cross-country skiing, swimming, or long-distance running. As well as the type of training, a major risk factor is atopic disposition. A mixed type of eosinophilic and neutrophilic airway inflammation has been shown to affect elite swimmers, ice-hockey players, and cross-country skiers. The inflammation may represent a form of repeated thermal, mechanical, or osmotic airway trauma resulting in a healing or remodelling process. Elite athletes commonly use antiasthma drugs to treat exercise-induced bronchial symptoms. Only a few controlled studies have been conducted on the effects of antiasthma drugs on asthma symptoms, bronchial hyperresponsiveness and airway inflammation in elite athletes. Inhaled beta(2)-adrenoceptor agonists are effective against exercise-induced bronchospasm. In contrast, airway inflammation, bronchial hyperresponsiveness and symptoms have responded poorly to inhaled corticosteroids and leukotriene antagonists. As discontinuing high-level exercise has proved effective in reducing eosinophilic airway inflammation, exercise or training should be restricted in athletes having troublesome symptoms and sputum eosinophilia. Switching training to less irritating environments should be considered whenever possible. It appears to be difficult to change the 'natural course' of asthma in athletes by anti-inflammatory treatment.
Airway inflammation, bronchial hyperresponsiveness and asthma in elite ice hockey players. A. Lumme, T. Haahtela, J. Ö unap, P. Rytilä, Y. Obase, M. Helenius, V. Remes, I. Helenius. #ERS Journals Ltd 2003. ABSTRACT: There is little information of lower respiratory symptoms, bronchial hyperresponsiveness and airway inflammation in elite ice hockey players.A total of 88 highly trained ice hockey players and 47 control subjects were studied. All the subjects were subjected to skin-prick tests, resting spirometry examinations and histamine-challenge tests. Adequate induced sputum samples were obtained from 68 of the ice hockey players and from 18 symptom-free control subjects on a separate day.Bronchial hyperresponsiveness in a histamine-challenge test was found in 21 (24%) of the athletes and in five (11%) of the controls. Current asthma (current asthmatic symptoms and increased bronchial responsiveness) was observed in 13 (15%) of the athletes and in one (2%) of the control subjects. Total asthma (current asthma or previously physician-diagnosed asthma) occurred in 19 (22%) of the athletes and in two (4%) of the controls. Atopy, according to skin-prick tests, was observed in 51 (58%) of the athletes and 17 (36%) of the control subjects. The differential cell counts of eosinophils (2.6 versus 0.2%) and neutrophils (80.9 versus 29.9%) in the sputum samples of the ice hockey players were significantly higher than in those of the control subjects.Asthma is common in elite ice hockey players and they show signs of a mixed type of neutrophilic and eosinophilic airway inflammation. Inhalation of cold air associated with exposure to indoor pollutants during intensive training is a possible causative factor.
A leukotriene antagonist, montelukast, was of no benefit in the treatment of asthma-like symptoms, increased bronchial hyperresponsiveness or a mixed type of eosinophilic and neutrophilic airway inflammation in highly-trained ice hockey players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.