Nuclear transcription factor nuclear factor-kappa B (NF-κB) has diverse pathophysiological functions, and NF-κB inhibitors are considered to be candidates for multiple therapeutic applications. We previously reported a novel triazine-based NF-κB inhibitor, 2-anilino-4,6-dichloro-1,3,5-triazine (NI241), that directly inhibits DNA binding of NF-κB. Here, we report synthesis of a series of triazine derivatives and evaluation of their structure-activity relationships for NF-κB inhibition. We found that 2-amino-4,6-dichloro-1,3,5-triazine substructure is essential for the inhibitory activity of the lead compound NI241, and modification of NI241 by introduction of an m-methoxy substituent on the phenyl ring afforded the more potent derivative 28. The structure-activity relationships identified in this study suggested a possible mechanism of irreversible NF-κB inhibition by NI241, and should be helpful in the design of other NF-κB inhibitors.
We report here the development of phenylamino-1,3,5-triazine derivatives as novel nonsteroidal progesterone receptor (PR) antagonists. PR plays key roles in various physiological systems, including the female reproductive system, and PR antagonists are promising candidates for clinical treatment of multiple diseases. By using the phenylamino-1,3,5-triazine scaffold as a template structure, we designed and synthesized a series of 4-cyanophenylamino-1,3,5-triazine derivatives. The synthesized compounds exhibited PR antagonistic activity, and among them, compound 12n was the most potent (IC 50 0.30 µM); it also showed significant binding affinity to the PR ligand-binding domain. Docking simulation supported the design rationale of the compounds. Our results suggest that the phenylamino-1,3,5-triazine scaffold is a versatile template for development of nonsteroidal PR antagonists and that the developed compounds are promising lead compounds for further structural development of nonsteroidal PR antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.