Mutations in mammalian Lis1 (Pafah1b1) result in neuronal migration defects. Several lines of evidence suggest that LIS1 participates in pathways regulating microtubule function, but the molecular mechanisms are unknown. Here, we demonstrate that LIS1 directly interacts with the cytoplasmic dynein heavy chain (CDHC) and NUDEL, a murine homolog of the Aspergillus nidulans nuclear migration mutant NudE. LIS1 and NUDEL colocalize predominantly at the centrosome in early neuroblasts but redistribute to axons in association with retrograde dynein motor proteins. NUDEL is phosphorylated by Cdk5/p35, a complex essential for neuronal migration. NUDEL and LIS1 regulate the distribution of CDHC along microtubules, and establish a direct functional link between LIS1, NUDEL, and microtubule motors. These results suggest that LIS1 and NUDEL regulate CDHC activity during neuronal migration and axonal retrograde transport in a Cdk5/p35-dependent fashion.
Heterozygous deletions of 17p13.3 result in the human neuronal migration disorders isolated lissencephaly sequence (ILS) and the more severe Miller-Dieker syndrome (MDS). Mutations in PAFAH1B1 (the gene encoding LIS1) are responsible for ILS and contribute to MDS, but the genetic causes of the greater severity of MDS are unknown. Here, we show that the gene encoding 14-3-3epsilon (YWHAE), one of a family of ubiquitous phosphoserine/threonine-binding proteins, is always deleted in individuals with MDS. Mice deficient in Ywhae have defects in brain development and neuronal migration, similar to defects observed in mice heterozygous with respect to Pafah1b1. Mice heterozygous with respect to both genes have more severe migration defects than single heterozygotes. 14-3-3epsilon binds to CDK5/p35-phosphorylated NUDEL and this binding maintains NUDEL phosphorylation. Similar to LIS1, deficiency of 14-3-3epsilon results in mislocalization of NUDEL and LIS1, consistent with reduction of cytoplasmic dynein function. These results establish a crucial role for 14-3-3epsilon in neuronal development by sustaining the effects of CDK5 phosphorylation and provide a molecular explanation for the differences in severity of human neuronal migration defects with 17p13.3 deletions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.